-
Notifications
You must be signed in to change notification settings - Fork 122
Open
Description
When using alt_delta() in r I keep getting virtually the same parameter estimates for each participant. I thought alt_delta() should return separate parameter estimates for each participant? I have run the same data through other Rescorla Wagner (RW) models (outside of hBayesDM), and I can see that the values are different for each participant. It is probably me being dim, but why might alt_delta() be returning similar estimates for each participant? Specifically, alt_delta() returns alpha approx. 0.5 for each participant. Any help/advice on this is greatly appreciated- thanks.
#Create data frame to house necessary variables:
data_STO <- read.csv("Pilot_LM_Data.csv") %>%
filter(blockname == "STO") %>%
select(subjID = subject,
choice = response,
outcome = feedback,
bluePunish = feedback,
orangePunish = feedback) %>%
mutate(
choice = ifelse(choice == 18, 1, 2),
outcome = ifelse(outcome == 1, 0, 1),
bluePunish = ifelse(outcome == 0, -1, 1),
orangePunish = ifelse(outcome == 0, -1, 1)
)
#Fit learning model:
LR_STO <- alt_delta(
data = data_STO,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 4,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10
)
#Print parameter estimates for each participant:
LR_STO$allIndPars
Metadata
Metadata
Assignees
Labels
No labels