diff --git a/ACEFormat.pdf b/ACEFormat.pdf index 54a9f62..e2bdbce 100644 Binary files a/ACEFormat.pdf and b/ACEFormat.pdf differ diff --git a/src/ContinuousEnergyNeutron.tex b/src/ContinuousEnergyNeutron.tex index 1ac5198..ec02059 100644 --- a/src/ContinuousEnergyNeutron.tex +++ b/src/ContinuousEnergyNeutron.tex @@ -602,7 +602,7 @@ \subsubsubsection{\var{LAW}=7---Simple Maxwellian Fission Spectrum}\label{sec:LA \begin{description} \item[$I$] is the normalization constant \begin{equation} - I = \theta^{{3/2}} \frac{\sqrt{\pi}}{2} \erf\left( \sqrt{(E-U)/\theta} \right) - \sqrt{(E-U)/\theta}\ e^{-(E-U)/\theta}, + I = \theta^{{3/2}} \bigg[\frac{\sqrt{\pi}}{2} \erf\left( \sqrt{(E-U)/\theta} \right) - \sqrt{(E-U)/\theta}\ e^{-(E-U)/\theta}\bigg], \label{eq:LAW7I} \end{equation} \item[$\theta$] is tabulated as a function of incident energy, $E$; and @@ -623,7 +623,7 @@ \subsubsubsection{\var{LAW}=9---Evaporation Spectrum}\label{sec:LAW9} \end{LAWTable} The outgoing energy, $E_{\mathrm{out}}$, can be calculated as \begin{equation} - f(E\rightarrow E_{\mathrm{out}}) = \frac{\sqrt{E_{\mathrm{out}}}}{I}\ e^{-E_{\mathrm{out}}/\theta(E)} + f(E\rightarrow E_{\mathrm{out}}) = \frac{E_{\mathrm{out}}}{I}\ e^{-E_{\mathrm{out}}/\theta(E)} \label{eq:LAW9f} \end{equation} where: @@ -636,7 +636,6 @@ \subsubsubsection{\var{LAW}=9---Evaporation Spectrum}\label{sec:LAW9} \item[$\theta$] is tabulated as a function of incident energy, $E$; and \item[$U$] is a constant introduced to define the proper upper limit for the final particle energy such that $0\leq E_{\mathrm{out}} \leq (E-U)$. \end{description} -\textbf{Note:} \Equationref{eq:LAW9f} is the same as \Equationref{eq:LAW7f}; just the definitions of $I$ in \Equationref{eq:LAW7I} and \Equationref{eq:LAW9I} are different. \subsubsubsection{\var{LAW}=11---Energy Dependent Watt Spectrum}\label{sec:LAW11} \begin{LAWTable}{\var{LAW}=11 (From ENDF-6, \MF=5, \var{LF}=11)}