Skip to content

SubPhase.cpp - Flow Rate Calculation #85

@Ricardoleite

Description

@Ricardoleite

Hello LBPM community,

I would like to bring to your attention some possible errors that I have identified in the flow rate calculation within the Core Flooding routine.

While reviewing the code in the file "SubPhase.cpp," I have noticed that at line 405, the "flow_magnitude" parameter is calculated using this equation:

405         double flow_magnitude = dir_x * dir_x + dir_y * dir_y + dir_z * dir_z;

To correct compute the "flow_magnitude" it is necessary to insert square root, i.e.,

405         double flow_magnitude = sqrt(dir_x * dir_x + dir_y * dir_y + dir_z * dir_z);

Consequently, it's necessary to correct the "flow_magnitude" for calculating the normalized vectors of flow direction in lines 412, 413, and 414:

412         dir_x /= flow_magnitude;
413         dir_y /= flow_magnitude;
414         dir_z /= flow_magnitude;

To illustrate the impact of this correction, I conducted a simulation of a viscous fingering problem within a 3D channel, having walls only on the upper and side boundaries (this problem can also be represented for a 2D fluid displacement in a channel). The simulation setup is given by:

Color {
   protocol = "core flooding"
   capillary_number = 0.238            // capillary number for the displacement
   timestepMax = 4000              // maximum timtestep
   alpha = 0.015561779                     // controls interfacial tension
   rhoA = 1.0                         // controls the density of fluid A
   rhoB = 1.0                         // controls the density of fluid B
   tauA = 1.5                         // controls the viscosity of fluid A
   tauB = 1.5                         // controls the viscosity of fluid B
   F = 0, 0, 0                        // body force
   WettingConvention = "SCAL"         // convention for sign of wetting affinity
   ComponentLabels = 0, -1, -2        // image labels for solid voxels
   ComponentAffinity = 0.0, 1.0, 0.6  // controls the wetting affinity for each label
   Restart = false
}
Domain {
   Filename = "/home/ricardo/LBPM/Results/ChannelDisplace/Channel-Displace-400-68-5.raw"
   ReadType = "8bit"              // data type
   N = 5, 68, 400             // size of original image
   nproc = 1, 1, 1                // process grid
   n = 5, 68, 400              // sub-domain size
   offset = 0, 0, 0         // offset to read sub-domain
   voxel_length = 1.0            // voxel length (in microns)
   ReadValues = -2, -1, 0, 1, 2   // labels within the original image
   WriteValues = -2, -1, 0, 2, 1  // associated labels to be used by LBPM
   BC = 4                         // boundary condition type (0 for periodic)
}
Analysis {
   analysis_interval = 500           // logging interval for timelog.csv
   subphase_analysis_interval = 500  // loggging interval for subphase.csv
   visualization_interval = 500    // interval to write visualization files
   N_threads = 1                      // number of analysis threads (GPU version only)
   restart_interval = 1000000         // interval to write restart file
   restart_file = "Restart"           // base name of restart file
}
Visualization {
   write_silo = true     // write SILO databases with assigned variables
   save_8bit_raw = true  // write labeled 8-bit binary files with phase assignments
   save_phase_field = true  // save phase field within SILO database
   save_pressure = true    // save pressure field within SILO database
   save_velocity = true    // save velocity field within SILO database
}
FlowAdaptor {
}        

This simulation setup should provide values of flow rate around $u_{z}=0.066666666$. The value can be obtained through capillary equation:

$$ Ca=\frac{\mu u_{z}}{\gamma} \quad \rightarrow \quad u_{z}=\frac{\gamma Ca}{\mu}=0.0666666 \quad \rightarrow \quad Q_{z}=\epsilon C_{xy}u_{z}=0.970588 \times 68 \times 5 \times u_{z}=21,99999 $$

where $\mu$ is the dynamic viscosity, $u_{z}$ is the fluid (usually water) velocity, $\gamma$ is the interfacial tension, $Q_{z}$ is the volumetric flux, $C_{xy}$ is the cross-sectional area, and $\epsilon$ is the porosity.

The figure below illustrate the results of $\phi$ field evolution.

Displace-test

The table below shows the values of 'water_flow_rate' (WFR) and 'not_water_flow_rate' (NWFR) for the case without any correction (Case 1) and with correction of line 405 (Case 2).

Case 1 Case 1 Case 2 Case 2
WFR NWFR WFR NWFR
t=500 6.0874668e-06 1.2654743e-06 0.034233833 0.0071165953
t=1000 6.023764e-06 1.3291772e-06 0.057217132 0.01262528
t=1500 5.2948992e-06 2.058042e-06 0.06354778 0.024699999
t=2000 4.5222899e-06 2.8306513e-06 0.046822044 0.029307471
t=2500 3.3200053e-06 4.0329359e-06 0.028894388 0.035099105
t=3000 2.7212275e-06 4.6317137e-06 0.020831444 0.03545653
t=3500 2.1033173e-06 5.2496239e-06 0.016925438 0.042243833
t=4000 1.6095557e-06 5.7433854e-06 0.014022473 0.050036457

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions