Skip to content

Websoft9/Waterflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Waterflow 🌊

AI-Driven DevOps Workflow Orchestration
Transform YAML configurations into production-ready workflows for DevOps workloads and Microservices Architecture

License AI-Driven Status


🎯 Vision

Waterflow bridges the gap between declarative YAML configurations and production-grade DevOps workflows, enabling seamless orchestration of microservices architectures through AI-driven development practices.


πŸ“‹ Table of Contents


πŸ” Overview

Waterflow is a next-generation DevOps orchestration platform that:

  • Converts YAML configurations into executable production workflows
  • Orchestrates complex microservices architectures with ease
  • Automates CI/CD pipelines and deployment strategies
  • Monitors and manages containerized workloads
  • Scales from single services to enterprise multi-cloud deployments

Built with AI-Driven Agile Development

This project leverages the BMAD Method (Build More, Architect Dreams) - a structured approach to AI-powered software development that ensures quality, maintainability, and scalability.


πŸ—οΈ BMAD Method - Development Approach

Baseline

Current State:

  • Repository initialized with foundational structure
  • AI-driven development methodology established
  • Project vision and scope defined

Technology Stack:

  • Primary Language: YAML (configuration), Go/Python (runtime - TBD)
  • Target Platforms: Kubernetes, Docker, Cloud-native environments
  • CI/CD: GitHub Actions, GitLab CI, Jenkins (multi-platform support)
  • Infrastructure: Terraform, Ansible integration planned

Project Scope:

  • Parse and validate YAML workflow definitions
  • Generate production-ready CI/CD pipelines
  • Support multiple orchestration platforms (K8s, Docker Swarm, etc.)
  • Provide real-time workflow monitoring and management
  • Enable blue-green and canary deployment strategies

Milestones

🎯 Phase 1: Foundation (Weeks 1-3)

Goal: Establish core YAML parsing and validation engine

  • M1.1: Define YAML schema specification v1.0
  • M1.2: Implement YAML parser with validation
  • M1.3: Create basic workflow AST (Abstract Syntax Tree)
  • M1.4: Set up testing framework and CI pipeline
  • M1.5: Documentation: Architecture Decision Records (ADRs)

Deliverables:

  • YAML schema documentation
  • Core parser library
  • Unit test suite (>80% coverage)
  • Development environment setup guide

πŸ”§ Phase 2: Workflow Engine (Weeks 4-7)

Goal: Build workflow execution and orchestration engine

  • M2.1: Design workflow execution model
  • M2.2: Implement dependency resolution algorithm
  • M2.3: Create plugin system for extensibility
  • M2.4: Build Docker/container integration
  • M2.5: Develop CLI for workflow management
  • M2.6: Integration testing suite

Deliverables:

  • Workflow execution engine
  • CLI tool (waterflow command)
  • Plugin SDK documentation
  • Example workflows repository

πŸš€ Phase 3: Production Features (Weeks 8-11)

Goal: Add enterprise-grade features and integrations

  • M3.1: Kubernetes operator development
  • M3.2: Multi-cloud provider support (AWS, GCP, Azure)
  • M3.3: Observability integration (Prometheus, Grafana)
  • M3.4: Secret management (Vault, SOPS)
  • M3.5: Advanced deployment strategies (blue-green, canary)
  • M3.6: Performance optimization and benchmarking

Deliverables:

  • Kubernetes operator
  • Cloud provider modules
  • Monitoring dashboards
  • Performance benchmarks report

πŸŽ“ Phase 4: Polish & Scale (Weeks 12-14)

Goal: Community readiness and production hardening

  • M4.1: Comprehensive documentation site
  • M4.2: Video tutorials and demos
  • M4.3: Security audit and penetration testing
  • M4.4: Performance tuning for large-scale deployments
  • M4.5: Community contribution guidelines
  • M4.6: v1.0 release preparation

Deliverables:

  • Production-ready v1.0 release
  • Documentation portal
  • Tutorial video series
  • Security audit report

Actions

πŸ”„ Continuous Development Actions

Week 1-2: Project Setup

actions:
  - Set up repository structure and branching strategy
  - Configure CI/CD pipelines (lint, test, build)
  - Establish code review process
  - Create project board with issue templates
  - Initialize development environment with DevContainer

Week 3-5: Core Development

actions:
  - Implement YAML parser using Go/Python ecosystem
  - Create comprehensive test fixtures
  - Build workflow validation engine
  - Develop error reporting system
  - Document API design decisions

Week 6-9: Integration Phase

actions:
  - Integrate with container runtimes
  - Build Kubernetes custom resources
  - Implement cloud provider SDKs
  - Create monitoring exporters
  - Conduct integration testing

Week 10-14: Refinement

actions:
  - Performance profiling and optimization
  - Security hardening and vulnerability scanning
  - Documentation refinement
  - User acceptance testing
  - Beta program with early adopters

Decisions

Technical Decisions (ADR Format)

ADR-001: Programming Language Selection

  • Status: Proposed
  • Context: Need performant, maintainable language for workflow orchestration
  • Decision: Evaluate Go (performance, concurrency) vs Python (ecosystem, AI tooling)
  • Consequences: TBD based on Phase 1 prototyping

ADR-002: YAML Schema Design

  • Status: In Progress
  • Context: Need flexible yet validated configuration format
  • Decision: Custom YAML schema with JSON Schema validation
  • Consequences: Better IDE support, validation tooling integration

ADR-003: Plugin Architecture

  • Status: Proposed
  • Context: Need extensibility for custom integrations
  • Decision: Hash-plugin or similar RPC-based plugin system
  • Consequences: Isolation, security, multi-language plugin support

ADR-004: State Management

  • Status: Proposed
  • Context: Workflow state persistence for reliability
  • Decision: Evaluate etcd vs database-backed state store
  • Consequences: Distributed consistency, operational complexity

ADR-005: Deployment Model

  • Status: Draft
  • Context: How users will run Waterflow
  • Decision: Support both standalone CLI and Kubernetes operator modes
  • Consequences: Flexibility but increased testing surface

✨ Features

🎯 Core Capabilities

  • πŸ“ Declarative Configuration: Define complex workflows in simple YAML
  • πŸ”„ Workflow Orchestration: Advanced dependency management and parallel execution
  • 🐳 Container-Native: First-class Docker and Kubernetes support
  • ☁️ Multi-Cloud: AWS, GCP, Azure integration out of the box
  • πŸ“Š Observability: Built-in monitoring, logging, and tracing
  • πŸ” Security: Secret management, RBAC, and audit logging
  • πŸš€ Deployment Strategies: Blue-green, canary, rolling updates
  • πŸ”Œ Extensible: Plugin architecture for custom integrations

🎨 Developer Experience

  • Intuitive YAML syntax with IDE autocomplete
  • Real-time validation and error reporting
  • Visual workflow graph generation
  • Hot-reload for rapid development
  • Comprehensive CLI with interactive mode

πŸ›οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    Waterflow System                      β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                           β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                β”‚
β”‚  β”‚  YAML Config │─────▢│    Parser    β”‚                β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜                β”‚
β”‚                               β”‚                          β”‚
β”‚                               β–Ό                          β”‚
β”‚                      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                 β”‚
β”‚                      β”‚   Validator    β”‚                 β”‚
β”‚                      β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜                 β”‚
β”‚                               β”‚                          β”‚
β”‚                               β–Ό                          β”‚
β”‚                      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                 β”‚
β”‚                      β”‚  Workflow AST  β”‚                 β”‚
β”‚                      β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜                 β”‚
β”‚                               β”‚                          β”‚
β”‚         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚         β–Ό                     β–Ό                     β–Ό  β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”β”‚
β”‚  β”‚ Executor   β”‚      β”‚  Scheduler   β”‚     β”‚  Plugin  β”‚β”‚
β”‚  β”‚ Engine     β”‚      β”‚              β”‚     β”‚  Manager β”‚β”‚
β”‚  β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜β”‚
β”‚        β”‚                    β”‚                   β”‚      β”‚
β”‚        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β”‚
β”‚                             β”‚                          β”‚
β”‚         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”‚
β”‚         β–Ό                   β–Ό                   β–Ό     β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚ Container  β”‚    β”‚  Kubernetes  β”‚    β”‚  Cloud   β”‚ β”‚
β”‚  β”‚ Runtime    β”‚    β”‚  Operator    β”‚    β”‚ Provider β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚                                                        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Components:

  1. Parser: YAML to internal representation
  2. Validator: Schema validation and lint checks
  3. Executor: Workflow execution engine
  4. Scheduler: Task orchestration and dependency resolution
  5. Plugin Manager: Dynamic loading of extensions
  6. Integrations: Container, K8s, cloud provider adapters

πŸš€ Getting Started

Prerequisites

# Required
- Git
- Docker 20.10+
- Kubernetes 1.24+ (for operator mode)

# Recommended
- kubectl
- helm 3+
- Make

Installation

# Clone the repository
git clone https://github.com/Websoft9/Waterflow.git
cd Waterflow

# Build from source (once available)
make build

# Or use pre-built binaries
curl -sSL https://get.waterflow.io/install.sh | sh

Deployment Options

Docker Compose (Development)

# Start development environment
make docker-compose-up

# View logs
make docker-compose-logs

# Stop environment
make docker-compose-down

Docker Compose (Production)

# Start production environment
make docker-compose-prod

# Run tests
make docker-compose-test

Helm (Kubernetes)

# Add Helm repository (once published)
helm repo add waterflow https://charts.waterflow.io
helm repo update

# Install Waterflow
helm install waterflow waterflow/waterflow

# Or install from local chart
helm install waterflow ./helm/waterflow

Terraform (Infrastructure as Code)

cd terraform

# Initialize Terraform
terraform init

# Plan deployment
terraform plan -var-file="environments/dev.tfvars"

# Apply changes
terraform apply -var-file="environments/dev.tfvars"

Quick Start

# Initialize a new workflow
waterflow init my-workflow

# Validate configuration
waterflow validate workflow.yaml

# Run workflow locally
waterflow run workflow.yaml

# Deploy to Kubernetes
waterflow deploy --context production workflow.yaml

πŸ“– Usage

Basic Workflow Example

# workflow.yaml
apiVersion: waterflow.io/v1
kind: Workflow
metadata:
  name: microservices-deploy
  
spec:
  stages:
    - name: build
      jobs:
        - name: build-api
          container: golang:1.21
          commands:
            - go build -o api ./cmd/api
          
    - name: test
      dependsOn: [build]
      jobs:
        - name: unit-tests
          container: golang:1.21
          commands:
            - go test ./...
            
    - name: deploy
      dependsOn: [test]
      jobs:
        - name: deploy-production
          provider: kubernetes
          manifest: ./k8s/deployment.yaml
          strategy: blue-green

Advanced Features

# Advanced workflow with secrets and monitoring
apiVersion: waterflow.io/v1
kind: Workflow
metadata:
  name: enterprise-pipeline
  
spec:
  secrets:
    - vault://production/db-credentials
    - sops://config/api-keys.enc
    
  monitoring:
    prometheus: true
    tracing: jaeger
    
  stages:
    - name: canary-deploy
      strategy:
        type: canary
        steps: [10, 25, 50, 100]
        metrics:
          - name: error-rate
            threshold: 0.01
          - name: latency-p99
            threshold: 500ms

πŸ—ΊοΈ Roadmap

Version 1.0 (Target: Q2 2025)

  • βœ… Core YAML parsing and validation
  • βœ… Basic workflow execution
  • βœ… Docker integration
  • πŸ”„ Kubernetes operator
  • πŸ”„ Multi-cloud support

Version 1.5 (Target: Q3 2025)

  • GitOps integration (ArgoCD, Flux)
  • Advanced scheduling algorithms
  • Workflow visualization UI
  • Cost optimization features

Version 2.0 (Target: Q4 2025)

  • AI-powered workflow optimization
  • Self-healing deployments
  • Multi-cluster orchestration
  • Marketplace for workflow templates

🀝 Contributing

We welcome contributions! This project follows AI-driven development practices using the BMAD Method.

How to Contribute

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes following conventional commits
  4. Push to your branch (git push origin feature/amazing-feature)
  5. Open a Pull Request with detailed description

Development Workflow

# Set up development environment
make dev-setup

# Run tests
make test

# Run linters
make lint

# Build locally
make build

# Run integration tests
make test-integration

AI-Driven Development Guidelines

  • Use the BMAD Method for feature planning
  • Document decisions in ADR format
  • Leverage AI coding assistants (Claude, Copilot, Cursor)
  • Maintain high test coverage (>80%)
  • Write clear, self-documenting code

πŸ“ Project Structure

Waterflow/
β”œβ”€β”€ .github/                 # GitHub Actions CI/CD and templates
β”‚   β”œβ”€β”€ workflows/          # CI/CD pipeline definitions
β”‚   └── ISSUE_TEMPLATE/     # Issue and PR templates
β”œβ”€β”€ cmd/                    # CLI applications
β”‚   └── waterflow/          # Main CLI binary
β”œβ”€β”€ internal/               # Private application code
β”‚   β”œβ”€β”€ cli/               # CLI command implementations
β”‚   └── core/              # Core business logic
β”œβ”€β”€ api/                    # API definitions and schemas
β”œβ”€β”€ config/                 # Configuration files and schemas
β”œβ”€β”€ docs/                   # Documentation
β”œβ”€β”€ examples/               # Example workflows and configurations
β”œβ”€β”€ helm/                   # Kubernetes Helm charts
β”‚   └── waterflow/         # Main Helm chart
β”œβ”€β”€ terraform/              # Infrastructure as Code
β”‚   β”œβ”€β”€ environments/      # Environment-specific configs
β”‚   └── modules/           # Reusable Terraform modules
β”œβ”€β”€ docker/                 # Docker configurations
β”‚   β”œβ”€β”€ Dockerfile         # Main application container
β”‚   β”œβ”€β”€ Dockerfile.test    # Test container
β”‚   β”œβ”€β”€ docker-compose.yml # Development environment
β”‚   β”œβ”€β”€ docker-compose.prod.yml  # Production environment
β”‚   └── docker-compose.test.yml  # Testing environment
β”œβ”€β”€ scripts/                # Build and development scripts
β”œβ”€β”€ test/                   # Test files and fixtures
β”œβ”€β”€ .vscode/               # VS Code workspace configuration
β”œβ”€β”€ Makefile               # Build automation
β”œβ”€β”€ go.mod                 # Go module definition
β”œβ”€β”€ go.sum                 # Go dependencies
β”œβ”€β”€ LICENSE                # MIT License
β”œβ”€β”€ README.md              # This file
β”œβ”€β”€ CONTRIBUTING.md        # Contribution guidelines
β”œβ”€β”€ CHANGELOG.md           # Version history
└── CODE_OF_CONDUCT.md     # Community standards

πŸ“š Documentation


πŸ™ Acknowledgments

  • Built following the BMAD Method
  • Inspired by modern DevOps tools (ArgoCD, Tekton, GitHub Actions)
  • Community-driven and AI-assisted development

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


πŸ“ž Contact & Support


⭐ Star this repository if you find it helpful!

Built with ❀️ using AI-driven development practices

About

YAML into production-ready workflow for DevOps workload and Microservices Architecture

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published