Skip to content

how to handle multi-classification using one-vs-rest method? #15

@simsong

Description

@simsong

From @jm-huang on April 19, 2016 9:40

I am a little confusing while using this package for multi-classification. can anyone tell me how to do it ? Thanks.

what i had try:

train_labels=[[1,2], [2], [3]]
train_datas = [[1,1,0], [1,2,2], [1,1,1]]
prob = problem(train_labels, train_datas)
param = parameter('-s 0')
model = train(prob, param)

but it arise some errors:
Traceback (most recent call last):
File "C:\Users\Jiaming\Dropbox\Internship in ADSC\DeepWalk\experiments\classifier.py", line 69, in process
prob = problem(train_labels, train_datas)
File "C:\Users\Jiaming\Anaconda2\lib\site-packages\liblinear-210-py2.7.egg\liblinear\liblinear.py", line 107, in init
for i, yi in enumerate(y): self.y[i] = y[i]
TypeError: a float is required

Copied from original issue: cjlin1#21

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions