-
Notifications
You must be signed in to change notification settings - Fork 0
Open
Labels
bugSomething isn't workingSomething isn't workingintegrationIntegration testingIntegration testingtechnical-debtCode quality issuesCode quality issues
Milestone
Description
Testing Gap
No integration tests exist for the complete monitoring pipeline, creating risk of system-level failures in production.
Components Needing Integration Testing
1. End-to-End Tool Tracking
- Agent execution → Hook triggers → Database writes → Metrics export → Prometheus scraping
- Verify complete data flow accuracy
2. Database Consistency
- Foreign key constraints between tables
- Transaction isolation
- Concurrent access handling
- Data integrity under load
3. Prometheus Integration
- Metric format validation
- HTTP endpoint functionality
- Registry management
- Scraping reliability
Test Architecture
Integration Test Structure
tests/
├── integration/
│ ├── test_end_to_end_tracking.py # Full workflow
│ ├── test_database_integration.py # Multi-table operations
│ ├── test_prometheus_integration.py # Metrics export
│ ├── test_concurrent_access.py # Parallel execution
│ └── test_performance_integration.py # Load testing
├── docker/
│ ├── test-prometheus.yml # Test Prometheus
│ └── test-environment.yml # Full stack
└── fixtures/
└── integration_scenarios.py # Test scenarios
Test Scenarios
Scenario 1: Complete Agent Workflow
def test_complete_agent_workflow():
# 1. Start prometheus exporter
exporter = start_test_exporter()
# 2. Simulate agent execution with tool usage
mock_agent_execution([
('Read', {'file_path': 'test.py'}),
('Edit', {'content': 'new content'}),
('Bash', {'command': 'pytest'})
])
# 3. Verify database entries
assert_database_entries([
'agent_invocations',
'agent_tool_uses',
'sessions'
])
# 4. Verify metrics endpoint
response = requests.get('http://localhost:9091/metrics')
assert 'agent_tool_usage_total' in response.text
# 5. Verify metric accuracy
assert_metric_value('agent_tool_usage_total{tool_name="Read"}', 1)Scenario 2: Concurrent Agent Execution
def test_concurrent_agent_execution():
# Simulate 5 agents running in parallel
agents = []
for i in range(5):
agent = MockAgent(f'agent-{i}')
agents.append(agent)
agent.start()
# Wait for completion
for agent in agents:
agent.join()
# Verify data integrity
assert_no_race_conditions()
assert_session_consistency()
assert_metric_accuracy()Scenario 3: Database Load Test
def test_database_load():
# Generate 10K invocations with 100K tool uses
generate_load_data(
sessions=100,
invocations_per_session=100,
tools_per_invocation=10
)
# Start collector
collector = MetricsCollector(test_db)
# Measure performance
start = time.time()
collector.collect_metrics()
duration = time.time() - start
# Performance assertions
assert duration < 1.0 # Under 1 second
assert memory_usage() < 100 * 1024 * 1024 # Under 100MBDocker Test Environment
# docker/test-stack.yml
version: '3.8'
services:
prometheus:
image: prom/prometheus
ports:
- "9090:9090"
volumes:
- ./test-prometheus.yml:/etc/prometheus/prometheus.yml
grafana:
image: grafana/grafana
ports:
- "3000:3000"
environment:
- GF_SECURITY_ADMIN_PASSWORD=test
agent-exporter:
build: .
ports:
- "9091:9091"
volumes:
- ./test_data:/app/logs
command: python tools/prometheus_exporter.py --port 9091Test Implementation
Database Integration Tests
class TestDatabaseIntegration:
def test_foreign_key_constraints(self):
# Insert agent_tool_uses without corresponding agent_invocation
# Should fail with foreign key constraint
with pytest.raises(sqlite3.IntegrityError):
insert_tool_use_without_invocation()
def test_transaction_rollback(self):
# Start transaction, make changes, rollback
# Verify no partial data persists
pass
def test_concurrent_writes(self):
# Multiple threads writing simultaneously
# Verify no deadlocks or data corruption
passPrometheus Integration Tests
class TestPrometheusIntegration:
def test_metrics_format_validation(self):
# Scrape metrics endpoint
response = requests.get('http://localhost:9091/metrics')
# Parse with prometheus parser
metrics = prometheus_parser.parse(response.text)
# Validate metric names and labels
for metric in metrics:
assert is_valid_metric_name(metric.name)
assert all(is_valid_label(label) for label in metric.labels)
def test_metric_cardinality(self):
# Generate high-cardinality scenario
# Verify metrics don't exceed limits
assert len(get_unique_label_combinations()) < 10000
def test_prometheus_scraping(self):
# Start prometheus with test config
# Verify successful scraping
# Check prometheus targets are healthy
passPerformance Integration Tests
def test_performance_under_load():
# Test with realistic production data volumes
scenarios = [
(1000, 10000), # 1K sessions, 10K invocations
(5000, 50000), # 5K sessions, 50K invocations
(10000, 100000), # 10K sessions, 100K invocations
]
for sessions, invocations in scenarios:
setup_test_data(sessions, invocations)
# Measure collection performance
collector = MetricsCollector(test_db)
duration = time_collection(collector)
# Assert performance requirements
assert duration < (invocations / 10000) # Linear scalingCI/CD Integration
# .github/workflows/integration-test.yml
name: Integration Tests
on: [push, pull_request]
jobs:
integration:
runs-on: ubuntu-latest
services:
prometheus:
image: prom/prometheus
ports:
- 9090:9090
steps:
- uses: actions/checkout@v3
- name: Setup test environment
run: docker-compose -f docker/test-stack.yml up -d
- name: Wait for services
run: |
wget --retry-connrefused --waitretry=5 --timeout=30 \
http://localhost:9090/api/v1/targets
- name: Run integration tests
run: |
pytest tests/integration/ -v \
--tb=short \
--durations=10Test Data Management
@pytest.fixture(scope='session')
def integration_database():
# Create temporary database with realistic data
db_path = create_test_database()
populate_with_realistic_data(db_path)
yield db_path
cleanup_test_database(db_path)
def populate_with_realistic_data(db_path):
# Insert representative data that matches production patterns
# - Various agent types and execution patterns
# - Realistic tool usage distributions
# - Time-based data spanning multiple days
passValidation Criteria
- End-to-end workflow tests passing
- Database consistency verified under load
- Prometheus integration working correctly
- Concurrent access handling validated
- Performance requirements met
- Error scenarios handled gracefully
- Docker test environment stable
Success Metrics
- Test Coverage: End-to-end scenarios covered
- Performance: 100K records processed in < 1 second
- Reliability: 0 failures in 1000 test runs
- Concurrency: No race conditions with 10 parallel agents
Effort Estimate
6 hours total
- 2 hours: End-to-end workflow tests
- 2 hours: Database integration tests
- 1 hour: Prometheus integration tests
- 1 hour: Docker environment and CI/CD
Dependencies
- Unit tests ([CRITICAL] Add unit tests for prometheus_exporter.py #11) should be implemented first
- Database indexes ([QUICK WIN] Add missing database indexes #4) improve test performance
- Authentication ([CRITICAL] No authentication on Prometheus metrics endpoint #6) affects integration test setup
References
- PR feat: Add comprehensive monitoring with Prometheus and Grafana #1: feat: Add comprehensive monitoring with Prometheus and Grafana #1
- Testing pyramid best practices
- Prometheus testing guidelines
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't workingintegrationIntegration testingIntegration testingtechnical-debtCode quality issuesCode quality issues