diff --git a/senteval/snli.py b/senteval/snli.py index 301f104f..3e7bf6cf 100644 --- a/senteval/snli.py +++ b/senteval/snli.py @@ -92,7 +92,7 @@ def run(self, params, batcher): logging.info("PROGRESS (encoding): %.2f%%" % (100 * ii / n_labels)) self.X[key] = np.vstack(enc_input) - self.y[key] = [dico_label[y] for y in mylabels] + self.y[key] = np.array([dico_label[y] for y in mylabels]) config = {'nclasses': 3, 'seed': self.seed, 'usepytorch': params.usepytorch, diff --git a/senteval/tools/validation.py b/senteval/tools/validation.py index 0fa91346..5bf33614 100644 --- a/senteval/tools/validation.py +++ b/senteval/tools/validation.py @@ -81,7 +81,7 @@ def run(self): clf.fit(X_in_train, y_in_train, validation_data=(X_in_test, y_in_test)) else: - clf = LogisticRegression(C=reg, random_state=self.seed) + clf = LogisticRegression(C=reg, multi_class='auto', solver='liblinear', random_state=self.seed) clf.fit(X_in_train, y_in_train) regscores.append(clf.score(X_in_test, y_in_test)) scores.append(round(100*np.mean(regscores), 2)) @@ -97,7 +97,7 @@ def run(self): clf.fit(X_train, y_train, validation_split=0.05) else: - clf = LogisticRegression(C=optreg, random_state=self.seed) + clf = LogisticRegression(C=optreg, multi_class='auto', solver='liblinear', random_state=self.seed) clf.fit(X_train, y_train) self.testresults.append(round(100*clf.score(X_test, y_test), 2)) @@ -149,7 +149,7 @@ def run(self): seed=self.seed) clf.fit(X_train, y_train, validation_data=(X_test, y_test)) else: - clf = LogisticRegression(C=reg, random_state=self.seed) + clf = LogisticRegression(C=reg, multi_class='auto', solver='liblinear', random_state=self.seed) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) scanscores.append(score) @@ -171,7 +171,7 @@ def run(self): seed=self.seed) clf.fit(self.train['X'], self.train['y'], validation_split=0.05) else: - clf = LogisticRegression(C=optreg, random_state=self.seed) + clf = LogisticRegression(C=optreg, multi_class='auto', solver='liblinear', random_state=self.seed) clf.fit(self.train['X'], self.train['y']) yhat = clf.predict(self.test['X']) @@ -217,7 +217,7 @@ def run(self): clf.fit(self.X['train'], self.y['train'], validation_data=(self.X['valid'], self.y['valid'])) else: - clf = LogisticRegression(C=reg, random_state=self.seed) + clf = LogisticRegression(C=reg, multi_class='auto', solver='liblinear', random_state=self.seed) clf.fit(self.X['train'], self.y['train']) scores.append(round(100*clf.score(self.X['valid'], self.y['valid']), 2)) @@ -227,7 +227,7 @@ def run(self): devaccuracy = np.max(scores) logging.info('Validation : best param found is reg = {0} with score \ {1}'.format(optreg, devaccuracy)) - clf = LogisticRegression(C=optreg, random_state=self.seed) + clf = LogisticRegression(C=optreg, multi_class='auto', solver='liblinear', random_state=self.seed) logging.info('Evaluating...') if self.usepytorch: clf = MLP(self.classifier_config, inputdim=self.featdim, @@ -238,7 +238,7 @@ def run(self): clf.fit(self.X['train'], self.y['train'], validation_data=(self.X['valid'], self.y['valid'])) else: - clf = LogisticRegression(C=optreg, random_state=self.seed) + clf = LogisticRegression(C=optreg, multi_class='auto', solver='liblinear', random_state=self.seed) clf.fit(self.X['train'], self.y['train']) testaccuracy = clf.score(self.X['test'], self.y['test'])