diff --git a/ggml/src/ggml-cann/aclnn_ops.cpp b/ggml/src/ggml-cann/aclnn_ops.cpp index bc33b99d96e..466c5d707de 100755 --- a/ggml/src/ggml-cann/aclnn_ops.cpp +++ b/ggml/src/ggml-cann/aclnn_ops.cpp @@ -2863,175 +2863,39 @@ void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst){ * MoE architectures, possibly involving sparse expert routing. */ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor* dst) { - //dst [M, K, N, 1] - ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1] - ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1 + ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1] -> [D, M, K, 1] + ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1 -> [D, 1, K, 1] ggml_tensor * ids = dst->src[2]; //ids [K, N] - - GGML_TENSOR_BINARY_OP_LOCALS - - // copy index from npu to cpu - int64_t n_as = ne02; // A - int64_t n_ids = ids->ne[0]; // K - - std::vector ids_host(ggml_nbytes(ids)); - ggml_cann_async_memcpy(ctx, ids_host.data(), ids->data, ggml_nbytes(ids), - ACL_MEMCPY_DEVICE_TO_HOST); - ACL_CHECK(aclrtSynchronizeStream(ctx.stream())); - - char * src0_original = (char *) src0->data; - char * src1_original = (char *) src1->data; - char * dst_original = (char *) dst->data; - size_t ori_src0_nb[4] = {nb00, nb01, nb02, nb03}; - - // src0 is F16, src1 is F32, dst is F32 - ggml_cann_pool_alloc src0_cast_allocator; - if (src0->type == GGML_TYPE_F16) { - src0_cast_allocator.alloc(ctx.pool(), sizeof(float) * ggml_nelements(src0)); - void* src0_cast_buf = src0_cast_allocator.get(); - - size_t cast_nb[GGML_MAX_DIMS]; - cast_nb[0] = sizeof(float_t); - for (int i = 1; i < GGML_MAX_DIMS; i++) { - cast_nb[i] = cast_nb[i - 1] * src0->ne[i - 1]; - } - - aclTensor* acl_src0_f16 = ggml_cann_create_tensor(src0); - aclTensor* acl_cast = ggml_cann_create_tensor(src0_cast_buf, - ACL_FLOAT, sizeof(float), src0->ne, cast_nb, 4); - GGML_CANN_CALL_ACLNN_OP(ctx, Cast, acl_src0_f16, ACL_FLOAT, acl_cast); - ggml_cann_release_resources(ctx, acl_cast, acl_src0_f16); - - src0_original = (char *) src0_cast_buf; - memcpy(ori_src0_nb, cast_nb, sizeof(ori_src0_nb)); - } - -#ifdef ASCEND_310P - ggml_tensor src0_row = *src0; - ggml_tensor src1_row = *src1; - ggml_tensor dst_row = *dst; - - if (src0->type == GGML_TYPE_F16) { - src0_row.type = GGML_TYPE_F32; - } - - // src0_row [D, M, 1, 1] weight without permute - src0_row.ne[2] = 1; - src0_row.ne[3] = 1; - src0_row.nb[0] = ori_src0_nb[0]; - src0_row.nb[1] = ori_src0_nb[1]; - src0_row.nb[2] = ori_src0_nb[1]; - src0_row.nb[3] = ori_src0_nb[1]; - - // src1_row [D, 1, 1, 1] -> input - src1_row.ne[1] = 1; - src1_row.ne[2] = 1; - src1_row.ne[3] = 1; - src1_row.nb[2] = nb11; - src1_row.nb[3] = nb11; - - // dst_row [M, 1, 1, 1] -> out - dst_row.ne[1] = 1; - dst_row.ne[2] = 1; - dst_row.ne[3] = 1; - dst_row.nb[2] = nb1; - dst_row.nb[3] = nb1; - - //create weight for one row - for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) { - for (int64_t id = 0; id < n_ids; id++) { - // expert index - int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]); - GGML_ASSERT(i02 >= 0 && i02 < n_as); - - // If B = 1 (broadcast), always use 0; otherwise, use id. - int64_t i11 = (ne11 == 1 ? 0 : id); - int64_t i12 = iid1; - - int64_t i1 = id; - int64_t i2 = i12; - - void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2]; - void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12; - void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2; - - src0_row.data = src0_tmp_ptr; - src1_row.data = src1_tmp_ptr; - dst_row.data = dst_tmp_ptr; - dst_row.src[0] = &src0_row; - dst_row.src[1] = &src1_row; - - ggml_cann_mul_mat(ctx, &dst_row); + GGML_ASSERT(src0->ne[3] == 1); + GGML_ASSERT(src1->ne[3] == 1); + GGML_ASSERT(dst->ne[3] == 1); + int64_t batch = src1->ne[2]; + GGML_ASSERT(batch == ids->ne[1]); + ggml_cann_pool_alloc export_allocator(ctx.pool(), src0->ne[0] * src0->ne[1] * ids->ne[0] * ggml_element_size(src0)); + void* export_ptr = export_allocator.get(); + for (int64_t i = 0; i < batch; i++) { + aclTensor *select_index = ggml_cann_create_tensor(ids, ids->ne, ids->nb, 1, ACL_FORMAT_ND, i * ids->nb[1]); + aclTensor *export_weight = ggml_cann_create_tensor(src0, src0->ne, src0->nb, 3); + int64_t select_export_ne[] = {src0->ne[0], src0->ne[1], ids->ne[0]}; + size_t select_export_nb[3]; + select_export_nb[0] = src0->nb[0]; + for (int k = 1;k < 3; k++) { + select_export_nb[k] = select_export_nb[k-1] * select_export_ne[k-1]; } + aclTensor *select_export = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_export_ne, select_export_nb, 3); + GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, export_weight, 0, select_index, select_export); + int64_t select_transpose_ne[] = {select_export_ne[1], select_export_ne[0], select_export_ne[2]}; + size_t select_transpose_nb[] = {select_export_nb[1], select_export_nb[0], select_export_nb[2]}; + aclTensor *select_export_transpose = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_transpose_ne, select_transpose_nb, 3); + int64_t active_tensor_ne[] = {src1->ne[0], 1, src1->ne[1]}; + size_t active_tensor_nb[] = {src1->nb[0], src1->nb[1], src1->nb[1]}; + aclTensor *active_tensor = ggml_cann_create_tensor(src1, active_tensor_ne, active_tensor_nb, 3, ACL_FORMAT_ND, i * src1->nb[2]); + int64_t dst_ne[] = {dst->ne[0], 1, dst->ne[1]}; + size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[1]}; + aclTensor *acl_dst = ggml_cann_create_tensor(dst, dst_ne,dst_nb, 3, ACL_FORMAT_ND, i * dst->nb[2]); + GGML_CANN_CALL_ACLNN_OP(ctx, BatchMatMul, active_tensor, select_export_transpose, acl_dst, 2); + ggml_cann_release_resources(ctx, select_index, export_weight, select_export, active_tensor, acl_dst, select_export_transpose); } - return; -#endif - - std::vector src0_tensor_vec; - std::vector src1_tensor_vec; - std::vector dst_tensor_vec; - for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) { - for (int64_t id = 0; id < n_ids; id++) { - // src0_row [M, D] -> weight && permute - int64_t src0_ne[2] = {ne01, ne00}; - size_t src0_nb[2] = {ori_src0_nb[1], ori_src0_nb[0]}; - // src1_row [D, 1] -> input - int64_t src1_ne[2] = {ne10, 1}; - size_t src1_nb[2] = {nb10, nb11}; - // dst_row [M, 1] -> out - int64_t dst_ne[2] = {ne0, 1}; - size_t dst_nb[2] = {nb0, nb1}; - - // expert index - int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]); - GGML_ASSERT(i02 >= 0 && i02 < n_as); - - // If B = 1 (broadcast), always use 0; otherwise, use id. - int64_t i11 = (ne11 == 1 ? 0 : id); - int64_t i12 = iid1; - - int64_t i1 = id; - int64_t i2 = i12; - - void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2]; - void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12; - void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2; - - aclTensor* acl_src0 = ggml_cann_create_tensor(src0_tmp_ptr, - ACL_FLOAT, sizeof(float), - src0_ne, src0_nb, 2); - aclTensor* acl_src1 = ggml_cann_create_tensor(src1_tmp_ptr, - ACL_FLOAT, sizeof(float), - src1_ne, src1_nb, 2); - aclTensor* acl_dst = ggml_cann_create_tensor(dst_tmp_ptr, - ACL_FLOAT, sizeof(float), - dst_ne, dst_nb, 2); - - src0_tensor_vec.push_back(acl_src0); - src1_tensor_vec.push_back(acl_src1); - dst_tensor_vec.push_back(acl_dst); - } - } - - size_t GROUP_SIZE = 128; - // GroupedMatmulV3 required tensor_list.size < 128 - for (size_t i = 0; i < src0_tensor_vec.size(); i += GROUP_SIZE) { - // split and call GroupedMatmulV3 - size_t end = std::min(i + GROUP_SIZE, src0_tensor_vec.size()); - std::vector src0_tensor_vec_split(src0_tensor_vec.begin() + i, src0_tensor_vec.begin() + end); - std::vector src1_tensor_vec_split(src1_tensor_vec.begin() + i, src1_tensor_vec.begin() + end); - std::vector dst_tensor_vec_split(dst_tensor_vec.begin() + i, dst_tensor_vec.begin() + end); - - aclTensorList* src0_tensor_list = aclCreateTensorList(src0_tensor_vec_split.data(), src0_tensor_vec_split.size()); - aclTensorList* src1_tensor_list = aclCreateTensorList(src1_tensor_vec_split.data(), src1_tensor_vec_split.size()); - aclTensorList* dst_tensor_list = aclCreateTensorList(dst_tensor_vec_split.data(), dst_tensor_vec_split.size()); - - GGML_CANN_CALL_ACLNN_OP(ctx, GroupedMatmulV3, src1_tensor_list, src0_tensor_list, - nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, -1, dst_tensor_list); - - ggml_cann_release_resources(ctx, src0_tensor_list, src1_tensor_list, dst_tensor_list); - } - return; } /** @@ -3057,108 +2921,109 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor* * @note This function assumes quantized data types and is designed for * MoE architectures with potential sparse expert routing. */ -static void ggml_cann_mul_mat_id_quant(ggml_backend_cann_context& ctx, ggml_tensor* dst) { +static void ggml_cann_mul_mat_id_quant(ggml_backend_cann_context& ctx, ggml_tensor* dst, const enum ggml_type type) { // TODO: Use aclnnGroupedMatMul //dst [M, K, N, 1] - ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1] - ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1 - ggml_tensor * ids = dst->src[2]; //ids [K, N] - - GGML_TENSOR_BINARY_OP_LOCALS - - // copy index from npu to cpu - int64_t n_as = ne02; // A - int64_t n_ids = ids->ne[0]; // K - - std::vector ids_host(ggml_nbytes(ids)); - ggml_cann_async_memcpy(ctx, ids_host.data(), ids->data, ggml_nbytes(ids), - ACL_MEMCPY_DEVICE_TO_HOST); - ACL_CHECK(aclrtSynchronizeStream(ctx.stream())); - - char * src0_original = (char *) src0->data; - char * src1_original = (char *) src1->data; - char * dst_original = (char *) dst->data; + ggml_tensor * src0 = dst->src[0]; // [D, M, A, 1] 量化权重 + ggml_tensor * src1 = dst->src[1]; // [D, B, N, 1] 输入激活 + ggml_tensor * ids = dst->src[2]; // [K, N] gating indices + + GGML_ASSERT(src0->ne[3] == 1); + GGML_ASSERT(src1->ne[3] == 1); + GGML_ASSERT(dst->ne[3] == 1); + + int64_t batch = src1->ne[2]; + GGML_ASSERT(batch == ids->ne[1]); + GGML_ASSERT(ids->type == GGML_TYPE_I32 || ids->type == GGML_TYPE_I64); + + size_t weight_nb[GGML_MAX_DIMS + 1], scale_nb[GGML_MAX_DIMS + 1], + dequant_nb[GGML_MAX_DIMS + 1]; + int64_t weight_ne[GGML_MAX_DIMS + 1], scale_ne[GGML_MAX_DIMS + 1], + *dequant_ne; + int64_t scale_offset = 0; + + // [3,4,5,64] -> [3,4,5,2,32] + int QK; + if(type == GGML_TYPE_Q8_0) QK = QK8_0; + else if(type == GGML_TYPE_Q4_0) QK = QK4_0; + weight_ne[0] = QK; + weight_ne[1] = src0->ne[0] / QK; + int QKS; + if(type == GGML_TYPE_Q8_0) QKS = sizeof(int8_t); + else if(type == GGML_TYPE_Q4_0) QKS = sizeof(int8_t)/2; + weight_nb[0] = QKS; + weight_nb[1] = weight_nb[0] * weight_ne[0]; + for (int i = 2; i < GGML_MAX_DIMS + 1; i++) { + weight_ne[i] = src0->ne[i - 1]; + weight_nb[i] = weight_nb[i - 1] * weight_ne[i - 1]; + } - ggml_tensor src0_row = *src0; - ggml_tensor src1_row = *src1; - ggml_tensor dst_row = *dst; + // [3,4,5,64] -> [3,4,5,2,1] + scale_ne[0] = 1; + scale_ne[1] = src0->ne[0] / QK; + scale_nb[0] = sizeof(uint16_t); + scale_nb[1] = scale_nb[0] * scale_ne[0]; + for (int i = 2; i < GGML_MAX_DIMS + 1; i++) { + scale_ne[i] = src0->ne[i - 1]; + scale_nb[i] = scale_nb[i - 1] * scale_ne[i - 1]; + } - const enum ggml_type type = dst->src[0]->type; - float weight_elem_size; - if (type == GGML_TYPE_Q4_0) { - weight_elem_size = float(sizeof(uint8_t)) / 2; - } else if (type == GGML_TYPE_Q8_0) { - weight_elem_size = float(sizeof(uint8_t)); - } else { - GGML_ABORT("MUL_MAT_ID only support quant type Q4_0 and Q8_0 "); + // [3,4,5,64] -> [3,4,5,2,32] + dequant_ne = weight_ne; + dequant_nb[0] = sizeof(float_t); + for (int i = 1; i < GGML_MAX_DIMS + 1; i++) { + dequant_nb[i] = dequant_nb[i - 1] * dequant_ne[i - 1]; } - // src0_row [D, M, 1, 1] weight without permute - src0_row.ne[2] = 1; - src0_row.ne[3] = 1; - src0_row.nb[0] = weight_elem_size; - src0_row.nb[1] = weight_elem_size * ne00; - src0_row.nb[2] = weight_elem_size * ne00; - src0_row.nb[3] = weight_elem_size * ne00; - size_t weight_stride = ne00 * ne01 * weight_elem_size; - size_t weight_size = weight_stride * ne02 * ne03; - - // scale [D, M, 1, 1] -> scale && permute - size_t scale_elem_size = sizeof(uint16_t); - size_t scale_stride = src0->ne[1] * src0->ne[0] / QK8_0 * scale_elem_size; + scale_offset = ggml_nelements(src0) * sizeof(int8_t); + ggml_cann_pool_alloc dequant_buffer_allocator( + ctx.pool(), ggml_nelements(src0) * sizeof(float_t)); + + aclTensor* acl_weight_tensor ; + acl_weight_tensor = src0->type == ggml_cann_create_tensor( + src0->data, ggml_cann_type_mapping(type), sizeof(int8_t)/2, weight_ne, weight_nb, + GGML_MAX_DIMS + 1); + aclTensor* acl_scale_tensor = ggml_cann_create_tensor( + src0->data, ACL_FLOAT16, sizeof(uint16_t), scale_ne, scale_nb, + GGML_MAX_DIMS + 1, ACL_FORMAT_ND, scale_offset); + void* dequant_ptr = dequant_buffer_allocator.get(); + aclTensor* dequant_tensor = ggml_cann_create_tensor( + dequant_ptr, ACL_FLOAT, sizeof(float_t), + dequant_ne, dequant_nb, GGML_MAX_DIMS + 1); + + aclnn_mul(ctx, acl_weight_tensor, acl_scale_tensor, dequant_tensor); + dequant_nb[0] = sizeof(float_t); + dequant_ne = src0->ne; + for (int i = 1; i < GGML_MAX_DIMS; i++) { + dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1]; + } - // src1_row [D, 1, 1, 1] -> input - src1_row.ne[1] = 1; - src1_row.ne[2] = 1; - src1_row.ne[3] = 1; - src1_row.nb[2] = nb11; - src1_row.nb[3] = nb11; - - // dst_row [M, 1, 1, 1] -> out - dst_row.ne[1] = 1; - dst_row.ne[2] = 1; - dst_row.ne[3] = 1; - dst_row.nb[2] = nb1; - dst_row.nb[3] = nb1; - - //create weight for one row - ggml_cann_pool_alloc weight_allocator(ctx.pool()); - void* weight_buffer = weight_allocator.alloc(nb02); - for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) { - for (int64_t id = 0; id < n_ids; id++) { - // expert index - int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]); - GGML_ASSERT(i02 >= 0 && i02 < n_as); - - // If B = 1 (broadcast), always use 0; otherwise, use id. - int64_t i11 = (ne11 == 1 ? 0 : id); - int64_t i12 = iid1; - - int64_t i1 = id; - int64_t i2 = i12; - - void* src0_tmp_ptr = src0_original + i02*weight_stride; - void* scale_tmp_ptr = src0_original + weight_size + i02*scale_stride; - void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12; - void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2; - - // mem cpy - ggml_cann_async_memcpy(ctx, weight_buffer, src0_tmp_ptr, weight_stride, - ACL_MEMCPY_DEVICE_TO_DEVICE); - void* scale_buffer = (char*)weight_buffer + weight_stride; - ggml_cann_async_memcpy(ctx, scale_buffer, scale_tmp_ptr, scale_stride, - ACL_MEMCPY_DEVICE_TO_DEVICE); - - src0_row.data = weight_buffer; - src1_row.data = src1_tmp_ptr; - dst_row.data = dst_tmp_ptr; - dst_row.src[0] = &src0_row; - dst_row.src[1] = &src1_row; - - ggml_cann_mul_mat(ctx, &dst_row); + ggml_cann_pool_alloc export_allocator(ctx.pool(), src0->ne[0] * src0->ne[1] * ids->ne[0] * sizeof(float)); + void* export_ptr = export_allocator.get(); + for (int64_t i = 0; i < batch; i++) { + aclTensor *select_index = ggml_cann_create_tensor(ids, ids->ne, ids->nb, 1, ACL_FORMAT_ND, i * ids->nb[1]); + aclTensor *export_weight = ggml_cann_create_tensor(dequant_ptr,ACL_FLOAT, sizeof(float_t), dequant_ne, dequant_nb, 3); + int64_t select_export_ne[] = {src0->ne[0], src0->ne[1], ids->ne[0]}; + size_t select_export_nb[3]; + select_export_nb[0] = dequant_nb[0]; + for (int k = 1;k < 3; k++) { + select_export_nb[k] = select_export_nb[k-1] * select_export_ne[k-1]; } + aclTensor *select_export = ggml_cann_create_tensor(export_ptr, ACL_FLOAT, sizeof(float_t), select_export_ne, select_export_nb, 3); + GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, export_weight, 0, select_index, select_export); + int64_t select_transpose_ne[] = {select_export_ne[1], select_export_ne[0], select_export_ne[2]}; + size_t select_transpose_nb[] = {select_export_nb[1], select_export_nb[0], select_export_nb[2]}; + aclTensor *select_export_transpose = ggml_cann_create_tensor(export_ptr, ACL_FLOAT, sizeof(float_t), select_transpose_ne, select_transpose_nb, 3); + int64_t active_tensor_ne[] = {src1->ne[0], 1, src1->ne[1]}; + size_t active_tensor_nb[] = {src1->nb[0], src1->nb[1], src1->nb[1]}; + aclTensor *active_tensor = ggml_cann_create_tensor(src1, active_tensor_ne, active_tensor_nb, 3, ACL_FORMAT_ND, i * src1->nb[2]); + int64_t dst_ne[] = {dst->ne[0], 1, dst->ne[1]}; + size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[1]}; + aclTensor *acl_dst = ggml_cann_create_tensor(dst, dst_ne,dst_nb, 3, ACL_FORMAT_ND, i * dst->nb[2]); + GGML_CANN_CALL_ACLNN_OP(ctx, BatchMatMul, active_tensor, select_export_transpose, acl_dst, 2); + ggml_cann_release_resources(ctx, select_index, export_weight, select_export, active_tensor, acl_dst, select_export_transpose); } - return; + return ; } void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst) { @@ -3170,7 +3035,7 @@ void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst) { break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q8_0: - ggml_cann_mul_mat_id_quant(ctx, dst); + ggml_cann_mul_mat_id_quant(ctx, dst, type); break; default: GGML_ABORT("Unsupported type for mul_mat_id"); diff --git a/ggml/src/ggml-cann/ggml-cann.cpp b/ggml/src/ggml-cann/ggml-cann.cpp index cb8af42ebf9..277145fa526 100755 --- a/ggml/src/ggml-cann/ggml-cann.cpp +++ b/ggml/src/ggml-cann/ggml-cann.cpp @@ -2355,7 +2355,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, case GGML_TYPE_Q4_0: #ifdef ASCEND_310P // Q4 && Q8 per group is not suppor on 310p device - return false; + return true; #endif // only support contiguous for quantized types. return ggml_is_contiguous(op->src[0]) &&