From 82dccb7a66ece46db19c7f4f5c922cc51e576058 Mon Sep 17 00:00:00 2001 From: Aditya Soni Date: Sun, 21 Jan 2018 11:05:12 +0530 Subject: [PATCH] Create mnist_softmax.py --- PyTorch/mnist_softmax.py | 94 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 94 insertions(+) create mode 100644 PyTorch/mnist_softmax.py diff --git a/PyTorch/mnist_softmax.py b/PyTorch/mnist_softmax.py new file mode 100644 index 0000000..48d2483 --- /dev/null +++ b/PyTorch/mnist_softmax.py @@ -0,0 +1,94 @@ +# https://github.com/pytorch/examples/blob/master/mnist/main.py +from __future__ import print_function +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.optim as optim +from torchvision import datasets, transforms +from torch.autograd import Variable + +# Training settings +batch_size = 64 + +# MNIST Dataset +train_dataset = datasets.MNIST(root='./mnist_data/', + train=True, + transform=transforms.ToTensor(), + download=True) + +test_dataset = datasets.MNIST(root='./mnist_data/', + train=False, + transform=transforms.ToTensor()) + +# Data Loader (Input Pipeline) +train_loader = torch.utils.data.DataLoader(dataset=train_dataset, + batch_size=batch_size, + shuffle=True) + +test_loader = torch.utils.data.DataLoader(dataset=test_dataset, + batch_size=batch_size, + shuffle=False) + + +class Net(nn.Module): + + def __init__(self): + super(Net, self).__init__() + self.l1 = nn.Linear(784, 520) + self.l2 = nn.Linear(520, 320) + self.l3 = nn.Linear(320, 240) + self.l4 = nn.Linear(240, 120) + self.l5 = nn.Linear(120, 10) + + def forward(self, x): + x = x.view(-1, 784) # Flatten the data (n, 1, 28, 28)-> (n, 784) + x = F.relu(self.l1(x)) + x = F.relu(self.l2(x)) + x = F.relu(self.l3(x)) + x = F.relu(self.l4(x)) + return self.l5(x) + + +model = Net() + +criterion = nn.CrossEntropyLoss() +optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) + + +def train(epoch): + model.train() + for batch_idx, (data, target) in enumerate(train_loader): + data, target = Variable(data), Variable(target) + optimizer.zero_grad() + output = model(data) + loss = criterion(output, target) + loss.backward() + optimizer.step() + if batch_idx % 10 == 0: + print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( + epoch, batch_idx * len(data), len(train_loader.dataset), + 100. * batch_idx / len(train_loader), loss.data[0])) + + +def test(): + model.eval() + test_loss = 0 + correct = 0 + for data, target in test_loader: + data, target = Variable(data, volatile=True), Variable(target) + output = model(data) + # sum up batch loss + test_loss += criterion(output, target).data[0] + # get the index of the max + pred = output.data.max(1, keepdim=True)[1] + correct += pred.eq(target.data.view_as(pred)).cpu().sum() + + test_loss /= len(test_loader.dataset) + print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( + test_loss, correct, len(test_loader.dataset), + 100. * correct / len(test_loader.dataset))) + + +for epoch in range(1, 10): + train(epoch) + test()