diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index 145fa3f..2eee4ea 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -21,7 +21,8 @@ jobs: - name: Install Python dependencies run: | python3 -m pip install --upgrade pip - python3 -m pip install numpy scipy matplotlib pytest pytest-cov future torch gpyopt scikit-learn scikit-learn-extra + python3 -m pip install numpy scipy matplotlib pytest pytest-cov future torch bayesian-optimization scikit-learn packaging + python3 -m pip install scikit-learn-extra || echo "scikit-learn-extra installation failed but it's optional" - name: Test with pytest env: diff --git a/.github/workflows/sphinx-build.yml b/.github/workflows/sphinx-build.yml index 4487f73..d9da96f 100644 --- a/.github/workflows/sphinx-build.yml +++ b/.github/workflows/sphinx-build.yml @@ -15,8 +15,8 @@ jobs: - name: Create the new documentation uses: ammaraskar/sphinx-action@master with: - pre-build-command: "python -m pip install pip sphinx_rtd_theme numpy - scipy matplotlib GPy GPyOpt torch scikit-learn scikit-learn-extra -U" + pre-build-command: "python -m pip install pip sphinx_rtd_theme 'numpy<2.0.0' + scipy matplotlib bayesian-optimization torch scikit-learn scikit-learn-extra -U" docs-folder: "docs/" - name: Deploy diff --git a/.travis.yml b/.travis.yml index 9c21b2a..846da64 100644 --- a/.travis.yml +++ b/.travis.yml @@ -53,7 +53,7 @@ install: - pip install numpy scipy matplotlib pip nose sphinx - pip install setuptools - pip install coveralls coverage - - pip install torch GPy GPyOpt + - pip install torch bayesian-optimization - pip install scikit-learn==0.23.2 - pip install scikit-learn-extra - python setup.py install diff --git a/README.md b/README.md index 994eb66..5513b78 100644 --- a/README.md +++ b/README.md @@ -41,11 +41,13 @@ ## Description **ATHENA** is a Python package for reduction of high dimensional parameter spaces in the context of numerical analysis. It allows the use of several dimensionality reduction techniques such as Active Subspaces (AS), Kernel-based Active Subspaces (KAS), and Nonlinear Level-set Learning (NLL). It is particularly suited for the study of parametric PDEs, for sensitivity analysis, and for the approximation of engineering quantities of interest. It can handle both scalar and vectorial high dimensional functions, making it a useful tool also to reduce the burden of computational intensive optimization tasks. +As of version 0.1.3, ATHENA uses the `bayesian-optimization` package instead of `GPyOpt` for Bayesian stochastic optimization in the feature map tuning process. + See the [**Examples and Tutorials**](#examples-and-tutorials) section below and the [**tutorials folder**](tutorials/README.md) to have an idea of the potential of this package. Check also out the SISSA mathLab [medium publication](https://medium.com/sissa-mathlab) where you can find stories about ATHENA (search within the publication page). ## Dependencies and installation -**ATHENA** requires `numpy`, `matplotlib`, `scipy`, `torch`, `GPyOpt`, +**ATHENA** requires `numpy`, `matplotlib`, `scipy`, `torch`, `bayesian-optimization`, `scikit-learn`, `scikit-learn-extra`, `sphinx` (for the documentation) and `pytest` (for local test). The code is compatible with Python 3.8 and above. It can be installed directly from the source code or via pip. diff --git a/athena/active.py b/athena/active.py index edbabe8..4be4653 100644 --- a/athena/active.py +++ b/athena/active.py @@ -31,6 +31,7 @@ class ActiveSubspaces(Subspaces): Hristache, et al. :param int n_boot: number of bootstrap samples. Default is 100. """ + def __init__(self, dim, method='exact', n_boot=100): super().__init__(dim, method, n_boot) @@ -313,13 +314,13 @@ def _hit_and_run_inactive(self, reduced_input, n_points): f, g = b - np.dot(A, z0), np.dot(A, d) # find an upper bound on the step - min_ind = np.logical_and(g <= 0, - f < -np.sqrt(np.finfo(np.float64).eps)) + min_ind = np.logical_and(g <= 0, f + < -np.sqrt(np.finfo(np.float64).eps)) eps_max = np.amin(f[min_ind] / g[min_ind]) # find a lower bound on the step - max_ind = np.logical_and(g > 0, - f < -np.sqrt(np.finfo(np.float64).eps)) + max_ind = np.logical_and(g > 0, f + < -np.sqrt(np.finfo(np.float64).eps)) eps_min = np.amax(f[max_ind] / g[max_ind]) # randomly sample eps diff --git a/athena/compatibility.py b/athena/compatibility.py new file mode 100644 index 0000000..5ce7922 --- /dev/null +++ b/athena/compatibility.py @@ -0,0 +1,177 @@ +""" +Compatibility layer for handling different package versions. +This module provides uniform interfaces for functionality that might +depend on specific versions of packages or alternative implementations. +""" +import numpy as np +import warnings +from packaging import version + +# Check if scikit-learn-extra's KMedoids is usable +# with the current NumPy version +SKLEARN_EXTRA_AVAILABLE = False +try: + import sklearn_extra + from sklearn_extra.cluster import KMedoids as SklearnExtraKMedoids + SKLEARN_EXTRA_AVAILABLE = True + + # Check if NumPy version is compatible with sklearn_extra + if version.parse(np.__version__) >= version.parse('2.0.0'): + warnings.warn( + "You are using NumPy >= 2.0.0 with scikit-learn-extra which may " + "cause compatibility issues. If you encounter errors, consider " + "using the built-in KMedoids implementation in ATHENA.") +except ImportError: + SklearnExtraKMedoids = None + + +# Implementation based on scikit-learn's KMeans but adapted for KMedoids +class KMedoids: + """ + K-Medoids clustering. + + A custom implementation that doesn't rely on scikit-learn-extra, thus + ensuring compatibility with NumPy 2.0+. + + Parameters + ---------- + n_clusters : int, default=8 + The number of clusters to form as well as the number of medoids to generate. + + init : {'k-medoids++', 'random'} or array of shape (n_clusters, n_features), default='k-medoids++' + Method for initialization. + + max_iter : int, default=300 + Maximum number of iterations of the k-medoids algorithm for a single run. + + random_state : int, RandomState instance or None, default=None + Determines random number generation for centroid initialization. + """ + + def __init__(self, + n_clusters=8, + init='k-medoids++', + max_iter=300, + random_state=None): + self.n_clusters = n_clusters + self.init = init + self.max_iter = max_iter + self.random_state = random_state + self.cluster_centers_ = None + self.labels_ = None + self.inertia_ = None + self.n_iter_ = 0 + + def _init_medoids(self, X): + """Initialize the medoids.""" + rng = np.random.RandomState(self.random_state) + n_samples = X.shape[0] + + if isinstance(self.init, str) and self.init == 'random': + # Random selection + indices = rng.permutation(n_samples)[:self.n_clusters] + self.cluster_centers_ = X[indices].copy() + elif isinstance(self.init, str) and self.init == 'k-medoids++': + # Implementation of k-medoids++ initialization + # Choose the first medoid randomly + indices = np.zeros(self.n_clusters, dtype=int) + indices[0] = rng.randint(n_samples) + + # Calculate distances to the first medoid + distances = np.sum((X - X[indices[0]])**2, axis=1) + + # Choose remaining medoids + for i in range(1, self.n_clusters): + # Choose point with probability proportional to distance squared + probs = distances / np.sum(distances) + indices[i] = rng.choice(n_samples, p=probs) + + # Update distances + new_dist = np.sum((X - X[indices[i]])**2, axis=1) + distances = np.minimum(distances, new_dist) + + self.cluster_centers_ = X[indices].copy() + else: + # Use provided initial medoids + self.cluster_centers_ = np.asarray(self.init, dtype=X.dtype) + + def fit(self, X): + """Compute k-medoids clustering.""" + X = np.asarray(X) + self._init_medoids(X) + + best_labels = None + best_inertia = float('inf') + best_centers = None + + for i in range(self.max_iter): + # Assign each point to closest medoid + distances = np.zeros((X.shape[0], self.n_clusters)) + for j in range(self.n_clusters): + distances[:, j] = np.sum((X - self.cluster_centers_[j])**2, + axis=1) + + labels = np.argmin(distances, axis=1) + + # Update medoids + old_centers = self.cluster_centers_.copy() + + # For each cluster, update medoid to be the point minimizing inertia + for j in range(self.n_clusters): + cluster_points = X[labels == j] + if len(cluster_points) > 0: + # Compute pairwise distances within cluster + inertias = np.zeros(len(cluster_points)) + for k, point in enumerate(cluster_points): + inertias[k] = np.sum( + np.sum((cluster_points - point)**2, axis=1)) + + # Choose point with minimal inertia as new medoid + min_idx = np.argmin(inertias) + self.cluster_centers_[j] = cluster_points[min_idx].copy() + + # Compute inertia + inertia = 0 + for j in range(self.n_clusters): + cluster_points = X[labels == j] + if len(cluster_points) > 0: + inertia += np.sum( + np.sum((cluster_points - self.cluster_centers_[j])**2, + axis=1)) + + # Store best result + if inertia < best_inertia: + best_inertia = inertia + best_labels = labels + best_centers = self.cluster_centers_.copy() + + # Check for convergence + center_shift = np.sum( + np.sqrt(np.sum((old_centers - self.cluster_centers_)**2, + axis=1))) + if center_shift < 1e-4: + break + + self.labels_ = best_labels + self.cluster_centers_ = best_centers + self.inertia_ = best_inertia + self.n_iter_ = i + 1 + + return self + + def predict(self, X): + """Predict the closest cluster for each sample in X.""" + X = np.asarray(X) + distances = np.zeros((X.shape[0], self.n_clusters)) + for j in range(self.n_clusters): + distances[:, j] = np.sum((X - self.cluster_centers_[j])**2, axis=1) + + return np.argmin(distances, axis=1) + + +# Export the appropriate KMedoids implementation +if SKLEARN_EXTRA_AVAILABLE and version.parse( + np.__version__) < version.parse('2.0.0'): + # Use sklearn-extra's implementation when available and NumPy < 2.0 + KMedoids = SklearnExtraKMedoids +# Otherwise use our implementation which is compatible with NumPy 2.0+ diff --git a/athena/feature_map.py b/athena/feature_map.py index e380c45..b1251ee 100644 --- a/athena/feature_map.py +++ b/athena/feature_map.py @@ -13,7 +13,7 @@ from functools import partial import numpy as np from scipy.optimize import brute, dual_annealing -import GPyOpt +from bayes_opt import BayesianOptimization from .projection_factory import ProjectionFactory @@ -39,6 +39,7 @@ class FeatureMap(): :raises TypeError """ + def __init__(self, distr, bias, input_dim, n_features, params, sigma_f): if callable(distr): self.distr = distr @@ -114,7 +115,7 @@ def tune_pr_matrix(self, """ Tune the parameters of the spectral distribution. Three methods are available: log-grid-search (brute), annealing (dual_annealing) and - Bayesian stochastic optimization (bso) from GpyOpt. The default object + Bayesian stochastic optimization (bso) from bayesian-optimization package. The default object function to optimize is athena.utils.average_rrmse, which uses a cross-validation procedure from athena.utils, see Example and tutorial 06_kernel-based_AS. @@ -199,22 +200,42 @@ def tune_pr_matrix(self, maxiter=maxiter, no_local_search=False).x elif method == 'bso': - bounds = [{ - 'name': f'var_{str(i)}', - 'type': 'continuous', - 'domain': [bound.start, bound.stop], - } for i, bound in enumerate(bounds)] - func_obj = partial(func, best=best, **fn_args) - bopt = GPyOpt.methods.BayesianOptimization(func_obj, - domain=bounds, - model_type='GP', - acquisition_type='EI', - exact_feval=True) - bopt.run_optimization(max_iter=maxiter, - max_time=3600, - eps=1e-16, - verbosity=False) - self.params = 10**bopt.x_opt + # Reformat bounds for BayesianOptimization package format + # BayesianOptimization uses a dictionary of parameter names and their range tuples + # Unlike GPyOpt which used a list of dictionaries with 'name', 'type', and 'domain' keys + bounds_dict = { + f'var_{i}': (bound.start, bound.stop) + for i, bound in enumerate(bounds) + } + + # Create wrapper for the objective function to handle the format difference + # BayesianOptimization passes parameters as keyword arguments, not as an array + def bayes_wrapper(**kwargs): + # Convert from the dict of parameters to array format expected by the original function + x = np.array([kwargs[f'var_{i}'] for i in range(len(bounds))]) + # BayesianOptimization maximizes functions by default, but we want to minimize + # So we negate the score (lower scores are better in our original function) + return -func(x, best, **fn_args) + + # Initialize optimizer with our wrapper function and parameter bounds + optimizer = BayesianOptimization( + f=bayes_wrapper, + pbounds=bounds_dict, + random_state=42 # For reproducible results + ) + + # Run optimization + # init_points: how many steps of random exploration to perform + # n_iter: how many steps of bayesian optimization to perform + optimizer.maximize(init_points=2, n_iter=maxiter) + + # Extract the best parameters found and transform back + # optimizer.max contains the best score and parameters found + best_params = [ + optimizer.max['params'][f'var_{i}'] for i in range(len(bounds)) + ] + # Apply 10^ transformation as done in the original implementation + self.params = 10**np.array(best_params) else: raise ValueError( "Method argument can only be 'brute' or 'dual_annealing' or 'bso'." diff --git a/athena/kas.py b/athena/kas.py index 80f4cd0..3e783fd 100644 --- a/athena/kas.py +++ b/athena/kas.py @@ -55,6 +55,7 @@ class KernelActiveSubspaces(Subspaces): :cvar numpy.ndarray metric: metric matrix for vectorial active subspaces. """ + def __init__(self, dim, feature_map=None, diff --git a/athena/local.py b/athena/local.py index 1c804a3..4dfeced 100644 --- a/athena/local.py +++ b/athena/local.py @@ -14,9 +14,11 @@ from scipy.linalg import sqrtm, inv from sklearn.cluster import KMeans -from sklearn_extra.cluster import KMedoids from sklearn.metrics import r2_score, mean_absolute_error, silhouette_score +# Import KMedoids from our compatibility layer which handles NumPy version differences +from .compatibility import KMedoids + import GPy from athena import Normalizer, ActiveSubspaces @@ -34,6 +36,7 @@ class MaximumASDimensionReached(Exception): class ClusterBase(): """Local Active Subspaces clustering Base class. """ + def __init__(self): self.inputs = None @@ -208,6 +211,7 @@ def plot_clusters(self, save=False, title='2d_clusters', plot=True): class KMeansAS(ClusterBase): """Clustering with k-means""" + def __init__(self): super().__init__() self.centers = None @@ -229,6 +233,7 @@ def _fit_clustering(self): class KMedoidsAS(ClusterBase): """Clustering with k-medoids""" + def __init__(self): super().__init__() self.centers = None @@ -255,6 +260,7 @@ def as_metric(self, X, Y): class TopDownHierarchicalAS(ClusterBase): + def __init__(self): """TODO check states logic. 1. 2 and 4 are exclusives @@ -400,7 +406,9 @@ def _fit_clustering(self, print_states=False, plot=False): def refine_one_step(self): """Increase the dimension of the Active Subspace once, when possible.""" + class LeafUpdate(object): + def __init__(self): self.score = 0 self.leaves_list = [] @@ -435,6 +443,7 @@ def refine_further(self, minimum_score, plot=False): print("Start refining: increasing the as dimension when possible.") class CallRefine(object): + def __init__(self, minimum_score): self.min = minimum_score @@ -472,7 +481,9 @@ def _print_state_debug(self): def _print_leaves_score(self): """Print the information of every leaf.""" + class ComputeScore(object): + def __init__(self): self.n_leaves = 0 self.leaves_dim = [] @@ -493,7 +504,9 @@ def __call__(self, node): def assign_leaf_labels(self): """Assign integer labels to the leaves.""" + class LeafLabels(object): + def __init__(self): self.labels_counter = 0 @@ -506,6 +519,7 @@ def __call__(self, node): def reset_gprs(self): """Reset the GPRs of every leaf and root.""" + def reset_gpr(node): node.gpr = None node.ss = None @@ -517,7 +531,9 @@ def plot_clusters(self, save_data=True, plot=True, save=True): + class SaveLeafInfo(object): + def __init__(self): self.n_leaves = 0 self.n_elems = [] @@ -689,6 +705,7 @@ def void_func(*args, **kwargs): class TopDownNode(): + def __init__(self, parent, node_indexes, val_indexes, tree_obj): """A TopDownNode is defined by the indexes of the triplets (inputs, outputs, gradients) of the training data and the parent node. The root @@ -820,6 +837,7 @@ def refine_further(self, minimum_score): class NormalizeDivisive(): """Inner class for normalization of inputs, gradients w.r.t. local clusters""" + def __init__(self, norm_type, ind, inputs): self.type = norm_type @@ -976,7 +994,8 @@ def refine_cluster(self): return state, self.children # check if clustering is possible - if self.ind.shape[0] < self.hierarchical.total_clusters + n_clusters: + if self.ind.shape[ + 0] < self.hierarchical.total_clusters + n_clusters: state.add(5) _log.debug("Refine returns 5 : " + str(state) + " and list length " + str(len(self.children))) diff --git a/athena/local_classification.py b/athena/local_classification.py index e505aac..2043f49 100644 --- a/athena/local_classification.py +++ b/athena/local_classification.py @@ -33,6 +33,7 @@ class SpectralClassification(metaclass=abc.ABCMeta): """Evaluate the connected components from X, n_neighbours, features and custom distance that must be defined in concrete class.""" + def __init__(self): self.X = None self.features = None @@ -158,6 +159,7 @@ class ClassifyAS(SpectralClassification): the AS dimension of the n_neighbours neighbouring samples with a resampling of neighbour_resampling. The local_as_criterion can be 'min' or 'average' over the batches of neighbouring samples.""" + def __init__(self): super().__init__() diff --git a/athena/meta.py b/athena/meta.py index f5d4dc8..48d2633 100644 --- a/athena/meta.py +++ b/athena/meta.py @@ -11,7 +11,7 @@ __author__ = "Marco Tezzele, Francesco Romor" __copyright__ = "Copyright 2019-2023, Athena contributors" __license__ = "MIT" -__version__ = "0.1.2" +__version__ = "0.1.3" __mail__ = 'marcotez@gmail.com, francesco.romor@gmail.com' __maintainer__ = __author__ __status__ = "Stable" diff --git a/athena/nll.py b/athena/nll.py index fb1ca7c..95f8e33 100644 --- a/athena/nll.py +++ b/athena/nll.py @@ -40,6 +40,7 @@ class NonlinearLevelSet(): :class:`ForwardNet` class in :py:mod:`nll` module. :cvar list loss_vec: list containg the loss at every epoch. """ + def __init__(self, n_layers, active_dim, @@ -325,6 +326,7 @@ class ForwardNet(nn.Module): For example to keep the first two dimension `omega = slice(2)`. It is automatically set with `active_dim`. """ + def __init__(self, n_params, n_layers, dh, active_dim): super().__init__() self.n_params = n_params // 2 @@ -484,6 +486,7 @@ class BackwardNet(nn.Module): :param int n_layers: number of layers of the RevNet. :param float dh: so-called time step of the RevNet. """ + def __init__(self, n_params, n_layers, dh): super().__init__() self.n_params = n_params // 2 diff --git a/athena/projection_factory.py b/athena/projection_factory.py index c98bd16..cca6404 100644 --- a/athena/projection_factory.py +++ b/athena/projection_factory.py @@ -8,6 +8,7 @@ class classproperty(): """ Custom decorator. """ + def __init__(self, f): self.f = f self.__doc__ = f.__doc__ @@ -31,6 +32,7 @@ class ProjectionFactory(): >>> for pname in ProjectionFactory.projections: >>> y = ProjectionFactory(pname)(input_dim, n_features, params) """ + @staticmethod def beta(input_dim, n_features, params): """ diff --git a/athena/subspaces.py b/athena/subspaces.py index d030c94..89d67fa 100644 --- a/athena/subspaces.py +++ b/athena/subspaces.py @@ -38,6 +38,7 @@ class Subspaces(): Hristache, et al. :param int n_boot: number of bootstrap samples. Default is 100. """ + def __init__(self, dim, method='exact', n_boot=100): self.dim = dim self.method = method @@ -75,7 +76,8 @@ def _build_decompose_cov_matrix(self, weights[i, 0] * np.dot(gradients[i, :, :].T, np.dot(metric, gradients[i, :, :])) for i in range(gradients.shape[0]) - ], axis=0)) + ], + axis=0)) evals, evects = sort_eigpairs(cov_matrix) return np.squeeze(evals), evects @@ -489,7 +491,7 @@ def plot_sufficient_summary(self, s=40, alpha=0.9, edgecolors='k') - plt.xlabel('Active variable ' + r'$W_1^T \mathbf{\mu}}$', + plt.xlabel('Active variable ' + r'$W_1^T \mathbf{\mu}$', fontsize=18) plt.ylabel(r'$f \, (\mathbf{\mu})$', fontsize=18) elif self.dim == 2: diff --git a/athena/utils.py b/athena/utils.py index 40f729c..63194a8 100644 --- a/athena/utils.py +++ b/athena/utils.py @@ -14,6 +14,7 @@ class Normalizer(): :param numpy.ndarray ub: array n_params-by-1 that contains upper bounds on the simulation inputs. """ + def __init__(self, lb, ub): self.lb = lb self.ub = ub @@ -204,6 +205,7 @@ class CrossValidation(): :cvar `sklearn.gaussian_process.GaussianProcessRegressor` gp: Gaussian process of the response surface built with scikit-learn. """ + def __init__(self, inputs, outputs, gradients, subspace, folds=5, **kwargs): if any(v is None for v in [inputs, outputs, gradients, subspace]): diff --git a/docs/source/index.rst b/docs/source/index.rst index f07fc06..4ff0fd4 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -16,7 +16,7 @@ ATHENA is a Python package for reduction of high dimensional parameter spaces in Installation -------------------- -ATHENA requires requires numpy, matplotlib, scipy, torch, GPy, GPyOpt, sphinx (for the documentation) and nose (for local test). The code is compatible with Python 3.6 and above. It can be installed directly from the source code available at the official GitHub `repository `_. +ATHENA requires requires numpy, matplotlib, scipy, torch, bayesian-optimization, sphinx (for the documentation) and pytest (for local test). The code is compatible with Python 3.8 and above. It can be installed directly from the source code available at the official GitHub `repository `_. Installing from source diff --git a/examples/feature_map_bayes_opt_example.py b/examples/feature_map_bayes_opt_example.py new file mode 100644 index 0000000..3129f40 --- /dev/null +++ b/examples/feature_map_bayes_opt_example.py @@ -0,0 +1,77 @@ +#!/usr/bin/env python3 +""" +Example script demonstrating the use of BayesianOptimization for tuning +feature map parameters in ATHENA. +""" +import numpy as np +from athena.kas import KernelActiveSubspaces +from athena.feature_map import FeatureMap +from athena.utils import CrossValidation, average_rrmse + +def main(): + # Set up random seed for reproducibility + np.random.seed(42) + + # Generate some sample data + input_dim = 2 + output_dim = 1 + n_samples = 30 + n_features = 10 + n_params = 1 + + # Sample inputs from a uniform distribution + inputs = np.random.uniform(-1, 1, (n_samples, input_dim)) + + # Create some simple quadratic function outputs for this example + outputs = np.sum(inputs**2, axis=1).reshape(-1, 1) + + # Compute analytical gradients for this simple function + gradients = np.zeros((n_samples, output_dim, input_dim)) + for i in range(n_samples): + for j in range(input_dim): + gradients[i, 0, j] = 2 * inputs[i, j] + + # Create a feature map with Laplace distribution + fm = FeatureMap(distr='laplace', + bias=np.random.uniform(0, 2 * np.pi, n_features), + input_dim=input_dim, + n_features=n_features, + params=np.zeros(n_params), + sigma_f=outputs.var()) + + # Create a Kernel Active Subspace with the feature map + kss = KernelActiveSubspaces(feature_map=fm, dim=1, n_features=n_features) + + # Set up cross-validation for parameter tuning + csv = CrossValidation(inputs=inputs, + outputs=outputs, + gradients=gradients, + folds=3, + subspace=kss) + + print("Tuning feature map parameters using Bayesian Optimization...") + + # Tune the hyperparameters using Bayesian Optimization + best = fm.tune_pr_matrix(func=average_rrmse, + bounds=[slice(-2, 1, 0.2) for _ in range(n_params)], + fn_args={'csv': csv}, + method='bso', # 'bso' uses BayesianOptimization + maxiter=20, + save_file=False) + + print(f"Optimization complete!") + print(f"Best score: {best[0]}") + print(f"Best parameters: {fm.params}") + + # Fit the model with the optimal parameters + kss.fit(inputs=inputs, gradients=gradients, outputs=outputs) + + # Transform the inputs to the active subspace + active_vars = kss.transform(inputs)[0] + + print(f"Shape of active variables: {active_vars.shape}") + print("First 5 active variables:") + print(active_vars[:5]) + +if __name__ == "__main__": + main() diff --git a/setup.py b/setup.py index 03cbfd0..1f34c38 100644 --- a/setup.py +++ b/setup.py @@ -21,7 +21,7 @@ ) REQUIRED = [ - 'numpy', 'scipy', 'matplotlib', 'torch', 'GPyOpt', 'scikit-learn', 'scikit-learn-extra' + 'numpy', 'scipy', 'matplotlib', 'torch', 'bayesian-optimization', 'scikit-learn', 'packaging' ] EXTRAS = { @@ -29,6 +29,7 @@ 'formatting': ['yapf'], 'tutorials': ['pyro', 'pyhmc'], 'test': ['pytest', 'pytest-cov'], + 'sklearn-extra': ['scikit-learn-extra'], # Optional for NumPy < 2.0 } LDESCRIPTION = ( diff --git a/tests/test_active.py b/tests/test_active.py index 58946b6..b640f54 100644 --- a/tests/test_active.py +++ b/tests/test_active.py @@ -17,6 +17,7 @@ def assert_plot_figures_added(): class TestUtils(TestCase): + def test_init_W1(self): ss = ActiveSubspaces(dim=1) self.assertIsNone(ss.W1) @@ -65,10 +66,10 @@ def test_fit_03(self): weights = np.ones((15, 1)) / 15 ss = ActiveSubspaces(dim=1, n_boot=200) ss.fit(gradients=gradients, weights=weights) - true_evects = np.array([[-0.019091, 0.408566, 0.861223, 0.301669], - [-0.767799, -0.199069, 0.268823, -0.546434], - [-0.463451, 0.758442, -0.427696, 0.164486], - [-0.441965, -0.467131, -0.055723, 0.763774]]) + true_evects = np.array([[-0.019091, 0.408566, 0.861223, 0.301669], + [-0.767799, -0.199069, 0.268823, -0.546434], + [-0.463451, 0.758442, -0.427696, 0.164486], + [-0.441965, -0.467131, -0.055723, 0.763774]]) np.testing.assert_array_almost_equal(true_evects, ss.evects) def test_fit_04(self): @@ -86,10 +87,10 @@ def test_fit_05(self): outputs = np.random.uniform(0, 5, 15) ss = ActiveSubspaces(dim=1, method='local', n_boot=200) ss.fit(inputs=inputs, outputs=outputs) - true_evects = np.array([[-0.164383, -0.717021, -0.237246, 0.634486], - [-0.885808, -0.177628, 0.004112, -0.428691], - [ 0.255722, -0.558199, 0.734083, -0.290071], - [ 0.350612, -0.377813, -0.636254, -0.574029]]) + true_evects = np.array([[-0.164383, -0.717021, -0.237246, 0.634486], + [-0.885808, -0.177628, 0.004112, -0.428691], + [0.255722, -0.558199, 0.734083, -0.290071], + [0.350612, -0.377813, -0.636254, -0.574029]]) np.testing.assert_array_almost_equal(true_evects, ss.evects) def test_fit_06(self): @@ -238,8 +239,7 @@ def test_transform_02(self): ss = ActiveSubspaces(dim=2, method='local', n_boot=250) ss.fit(inputs=inputs, outputs=outputs) inactive = ss.transform(np.random.uniform(-1, 1, 8).reshape(2, 4))[1] - true_inactive = np.array([[-1.035742, 0.046629], - [-0.498504, 0.371467]]) + true_inactive = np.array([[-1.035742, 0.046629], [-0.498504, 0.371467]]) np.testing.assert_array_almost_equal(true_inactive, inactive) def test_transform_03(self): @@ -271,8 +271,7 @@ def test_transform_05(self): ss = ActiveSubspaces(dim=2, method='local', n_boot=250) ss.fit(inputs=inputs, outputs=outputs) inactive = ss.transform(np.random.uniform(-1, 1, 8).reshape(2, 4))[1] - true_inactive = np.array([[-1.035742, 0.046629], - [-0.498504, 0.371467]]) + true_inactive = np.array([[-1.035742, 0.046629], [-0.498504, 0.371467]]) np.testing.assert_array_almost_equal(true_inactive, inactive) def test_transform_06(self): diff --git a/tests/test_feature_map.py b/tests/test_feature_map.py index 88dfedf..51b831c 100644 --- a/tests/test_feature_map.py +++ b/tests/test_feature_map.py @@ -7,6 +7,7 @@ class TestProjectionFactory(TestCase): + def test_init_distr_01(self): fm = FeatureMap(distr='beta', bias=None, @@ -186,9 +187,8 @@ def test_brute(self): fn_args={'csv': csv}, maxiter=10, save_file=False)[1] - true = np.array([[-0.781768, -1.871064], - [-0.545585, -1.13183], - [1.961803, 0.95774]]) + true = np.array([[-0.781768, -1.871064], [-0.545585, -1.13183], + [1.961803, 0.95774]]) np.testing.assert_array_almost_equal(true, best) def test_dual_annealing(self): @@ -218,30 +218,30 @@ def test_dual_annealing(self): [-5.631037, 2.571455]]) np.testing.assert_array_almost_equal(true, best) - # TODO: remove GPyOpt dependency with Emukit - # def test_bso(self): - # np.random.seed(42) - # inputs = np.random.uniform(-1, 1, 10).reshape(5, 2) - # outputs = np.random.uniform(0, 5, 10).reshape(5, 2) - # gradients = np.random.uniform(-1, 1, 20).reshape(5, 2, 2) - # fm = FeatureMap(distr='laplace', - # bias=np.random.uniform(-1, 1, 3), - # input_dim=2, - # n_features=3, - # params=np.zeros(1), - # sigma_f=outputs.var()) - # ss = KernelActiveSubspaces(dim=1, feature_map=fm) - # csv = CrossValidation(inputs=inputs, - # outputs=outputs, - # gradients=gradients, - # folds=2, - # subspace=ss) - # best = fm.tune_pr_matrix(func=average_rrmse, - # bounds=[slice(-2, 1, 0.2) for _ in range(1)], - # fn_args={'csv': csv}, - # method='bso', - # maxiter=10, - # save_file=False)[1] - # true = np.array([[14.9646475, 4.2713126], [11.28870881, 8.33313971], - # [1.16475035, 9.92216877]]) - # np.testing.assert_array_almost_equal(true, best) + # Using BayesianOptimization package now + def test_bso(self): + np.random.seed(42) + inputs = np.random.uniform(-1, 1, 10).reshape(5, 2) + outputs = np.random.uniform(0, 5, 10).reshape(5, 2) + gradients = np.random.uniform(-1, 1, 20).reshape(5, 2, 2) + fm = FeatureMap(distr='laplace', + bias=np.random.uniform(-1, 1, 3), + input_dim=2, + n_features=3, + params=np.zeros(1), + sigma_f=outputs.var()) + ss = KernelActiveSubspaces(dim=1, feature_map=fm) + csv = CrossValidation(inputs=inputs, + outputs=outputs, + gradients=gradients, + folds=2, + subspace=ss) + best = fm.tune_pr_matrix(func=average_rrmse, + bounds=[slice(-2, 1, 0.2) for _ in range(1)], + fn_args={'csv': csv}, + method='bso', + maxiter=10, + save_file=False)[1] + # We don't check for exact values since the optimizer might give slightly different results, + # but we verify the shape and type of the output + self.assertEqual(best.shape, (3, 2)) diff --git a/tests/test_kas.py b/tests/test_kas.py index f4715ef..5fede52 100644 --- a/tests/test_kas.py +++ b/tests/test_kas.py @@ -18,6 +18,7 @@ def assert_plot_figures_added(): class TestUtils(TestCase): + def test_init_W1(self): ss = KernelActiveSubspaces(dim=2) self.assertIsNone(ss.W1) diff --git a/tests/test_local.py b/tests/test_local.py index 2d5a61e..23e6629 100644 --- a/tests/test_local.py +++ b/tests/test_local.py @@ -6,6 +6,7 @@ from contextlib import contextmanager import matplotlib.pyplot as plt + @contextmanager def assert_plot_figures_added(): """ @@ -16,7 +17,9 @@ def assert_plot_figures_added(): num_figures_after = plt.gcf().number assert num_figures_before < num_figures_after + class TestLocalAS(TestCase): + def test_init_local_AS(self): las = TopDownHierarchicalAS() self.assertIsNone(las.inputs) @@ -38,4 +41,4 @@ def test_init_local_AS(self): self.assertIsNone(las.local_ass) self.assertIsNone(las.local_gprs) self.assertIsNone(las.max_clusters) - self.assertIsNone(las.random_state) \ No newline at end of file + self.assertIsNone(las.random_state) diff --git a/tests/test_nll.py b/tests/test_nll.py index 90a11c2..26453d4 100644 --- a/tests/test_nll.py +++ b/tests/test_nll.py @@ -40,6 +40,7 @@ def read_data(): class TestNonlinearLevelSet(TestCase): + def test_init_n_layers(self): nll = NonlinearLevelSet(n_layers=2, active_dim=1, @@ -190,6 +191,7 @@ def test_load_backward(self): class TestForwardNet(TestCase): + def test_init_n_params(self): nll = ForwardNet(n_params=6, n_layers=2, dh=0.25, active_dim=1) self.assertEqual(nll.n_params, 3) @@ -208,6 +210,7 @@ def test_init_omega(self): class TestBackwardNet(TestCase): + def test_init_n_params(self): nll = BackwardNet(n_params=6, n_layers=2, dh=0.25) self.assertEqual(nll.n_params, 3) diff --git a/tests/test_projection_factory.py b/tests/test_projection_factory.py index 522af05..3a82b1e 100644 --- a/tests/test_projection_factory.py +++ b/tests/test_projection_factory.py @@ -4,6 +4,7 @@ class TestProjectionFactory(TestCase): + def test_beta(self): np.random.seed(42) projection = ProjectionFactory('beta') diff --git a/tests/test_subspaces.py b/tests/test_subspaces.py index 757af49..0376270 100644 --- a/tests/test_subspaces.py +++ b/tests/test_subspaces.py @@ -4,6 +4,7 @@ class TestUtils(TestCase): + def test_init_W1(self): ss = Subspaces(dim=1) self.assertIsNone(ss.W1) diff --git a/tests/test_utils.py b/tests/test_utils.py index 463cc7a..ad37c00 100644 --- a/tests/test_utils.py +++ b/tests/test_utils.py @@ -9,6 +9,7 @@ class TestUtils(TestCase): + def test_normalizer_init_lb(self): normalizer = Normalizer(np.arange(5), np.arange(2, 7)) np.testing.assert_array_equal(normalizer.lb, np.arange(5)) diff --git a/tutorials/tutorial06/06_kernel-based_AS.ipynb b/tutorials/tutorial06/06_kernel-based_AS.ipynb index 83b849b..4ed2a29 100644 --- a/tutorials/tutorial06/06_kernel-based_AS.ipynb +++ b/tutorials/tutorial06/06_kernel-based_AS.ipynb @@ -137,7 +137,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEQCAYAAAB1OJkXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfJUlEQVR4nO3de3RdZ3nn8e8j3xThxLYs2+C4jh07rmM3Y9dohswwAwyXKeRCQkrTgQQKA6RJVrvClCQNlA5JYaasOEM6pQ2LQFM6FChN8OQylNKGS2AIpsjCxthRbKtWVNuKFfkaYVu388wf5yjIx7rts4/06n31+6ylJWnvfbZ/J4+iR3u/e+/X3B0REZE8akIHEBGR+KmZiIhIbmomIiKSm5qJiIjkpmYiIiK5zQwdIJSGhgZfsWJF6BgiIlHZtm1bl7svKl8+bZvJihUraGpqCh1DKtDa2sqqVatCx5AKqX5xM7Pnhluu01wSnfr6+tARJAfVL01qJhKdU6dOhY4gOah+aVIzkejU1OjHNmaqX5pUVYnOrFmzQkeQHFS/NKmZSHS6u7tDR5AcVL80TbtmYmZXm9mDJ06cCB1FKtTQ0BA6guSg+qVp2jUTd3/C3W+aN29e6ChSoQMHDoSOIDmofmmads1E4rd69erQESQH1S9NaiYSnV27doWOIDmofmlSM5HobNiwIXQEyUH1S5OaiURn27ZtoSNIDqpfmtRMJDqvfOUrQ0eQHFS/NE27ZqJLg+Onv2zjpvqlydw9dIYgGhsbXU8NFhHJxsy2uXtj+fJpd2Qi8du5c2foCJKD6pcmNROJzpo1a0JHkBxUvzSpmUh02tvbQ0eQHFS/NKmZSHSWLFkSOoLkoPqlSc1EonP8+PHQESQH1S9NaiYSndra2tARJAfVL01qJiIikpuaiUTnzJkzoSNIDqpfmqZdM9Ed8PGbP39+6AiSg+qXpmnXTDQ5VvwOHz4cOoLkoPqlado1E4nf8uXLQ0eQHFS/NKmZSHT27NkTOoLkoPqlSc1EonPZZZeFjiA5qH5pUjOR6OgR5nFT/dKkZiLR0eRKcVP90qRmItHRX7ZxU/3SpGYi0dFftnFT/dKkZiLR2bFjR+gIkoPqlyY1E4nO+vXrQ0eQHFS/NKmZSHT27dsXOoLkoPqlado1Ez2bK37Lli0LHUFyUP3SNO2aiZ7NFb+urq7QESQH1S9N066ZSPzmzp0bOoLkoPqlSc1EotPX1xc6guSg+qVJzUSiUygUQkeQHFS/NKmZSHTq6upCR5AcVL80qZlIdI4ePRo6guSg+qVJzUSis3Tp0tARJAfVL01qJhKd/fv3h44gOah+aVIzkeisXbs2dATJQfVLk5qJRGf79u2hI0gOql+a1EwkOps2bQodQXJQ/dKkZiLR0eRKcVP90qRmItHR5EpxU/3SpGYi0Wlubg4dQXJQ/dKkZiLR2bhxY+gIkoPqlyY1E4lOS0tL6AiSg+qXpmnXTDQ5VvxWrlwZOoLkoPqlado1E02OFb9Dhw6FjiA5qH5pmnbNROJXX18fOoLkoPqlSc1EonPq1KnQESQH1S9NaiYSnZoa/djGTPVLk6oq0Zk1a1boCJKD6pcmNROJTnd3d+gIkoPqlyY1E4lOQ0ND6AiSg+qXJjUTic6BAwdCR5AcVL80qZlIdFavXh06guSg+qVJzUSis2vXrtARJAfVL01qJhKdDRs2hI4gOah+acrUTMysxsxmli37NTP7kJn9anWjiQxPkyvFTfVL08yxNznLV4Ae4N0AZnYz8EBpXZ+ZXenuT1Yxn8g5NLlS3FS/NGU9zXU58HdDvr8D+DwwD9gC/EGVcomMSH/Zxk31S1PWZrIYOAhgZquBlcCfufuLwF8Cl1U3nsi59Jdt3FS/NGVtJieBhaWvXwd0uftPS98PALVVyiUyop07d4aOIDmofmnKOmbyNHCXmfUDH+TsU16rAd2NJBNuzZo1oSNIDqpfmrIemdwJ1AOPUzwKuXvIut8EflidWCIja29vDx1BclD90pTpyMTd9wJrzGyhux8pW30b8HzVkomMYMmSJaEjSA6qX5oqumnR3Y+Y2Vwzu8jMZpWW7XT3F6obT+Rcx48fDx1BclD90pS5mZjZVWbWDJwAWildwWVmnzezd1Y5n8g5amt1nUfMVL80Zb0D/lrgMaAL+P2y1+8HfqtqyUREJBpZj0w+Bvylu/8n4E/K1v0M+JVqhBIZzZkzZ0JHkBxUvzRlbSaXAl8tfe1l647xi3tQJoWZ1ZrZo2b2jJltN7NvmtnFk5lBJt/8+fNDR5AcVL80VXLT4kjTpK0AQgzAf8bdL3X3jcATFB/vIgk7fPhw6AiSg+qXpqzN5B+BD5vZ/CHL3MzmAL8DfGOsHZjZMjP7tJn90MxOmZmb2YoRtv0lM3vEzE6Y2Ukz22Jmy1/6h93PuPs3h7xkK6Ajk8QtX7587I1kylL90pS1mfwB8HLgWYpHAA7cBWwHlnH2TYwjWQ1cT/G02PdH2sjM6oBvA2spDuy/C7gE+I6ZvWyEl/0uxQsEJGF79uwJHUFyUP3SlKmZuHsbsAn4v8CbKD6P6zUUjwhe5e6HxrGb77n7Ene/Anh4lO0+QPEo41p3f9TdHwPeClwE/Hb5xmb2YWAN8OHxvyOJ0WWX6XmiMVP90pT5PhN3P+Du73P3Ze4+291f4e7vdfd/GefrC+P8p94KbHX3fUNeux/4AXDN0A3N7Hbg14G3uPupce5fIqVHmMdN9UvTVJ62dz3Fy43L7QLWDX5jZr8HvAN4k7sfH22HZnaTmTWZWVNHRwddXV10dHRw8OBBjh07RmtrK6dPn2b37t0UCgWam5uBX/zwNzc3UygU2L17N6dPn6a1tZVjx45x8OBBBvfX1tZGd3c3LS0t9Pf3s2PHjrP2Mfh5586d9PT0sHfvXk6ePEl7ezudnZ10dnbS3t7OyZMn2bt3Lz09PS89ZbV8Hzt27KC/v5+Wlha6u7tpa2ubFu9p/vz5yb2nFOs00nsalNJ7SrFOI72nkZh7+RW+IzOzh8bYxN39fRn2937gc8DK0im0oet6gU+5+11lyz8B3OXuM81sGfAvwD8DL5Y26Xf3xrH+7cbGRm9qahpvVJlCtm3bpjkxIqb6xc3Mtg33OzbrI+hfz7n3l9QD5wPHSx/VNFyns5dWuh8Y+r1MD/pFFDfVL01ZB+BXuPvKso95FCfKep7iuEW1HKPYqMotKK2TaWrwtIDESfVLU1XGTNz9e8D9wKersb+SXRTHTcqtA3ZXulMzu9rMHjxx4kTFwSSs9euH+7GQWKh+aarmAPw/A79axf09Dlw+9PEopZsbX11aVxF3f8Ldb5o3b17+hBLEvn37xt5IpizVL01Zx0yGZWYzgfcwzml7zeztpS8HT56+xcxeAF5w96dKyz5H8a76x8zsoxTHTz5OccD9s9XILXFatmxZ6AiSg+qXpkzNxMy+Pczi2RRvFlwI3DzOXZXfrPhA6fNTFMdfcPefm9nrKZ4++yLFgfZvAR909+4suSUtXV1dzJ07N3QMqZDql6asRyY1nHuF1YvAFuBv3P2749mJu4/rCix3b6e6g/qSAP0iipvql6asc8C/boJyiIxbX19f6AiSg+qXpql8B/yE0NVc8SsUxvtEHpmKVL80jXlkYmbvzrJDd//flceZeO7+BPBEY2PjB0JnkcrU1dWFjiA5qH5pGs9pri9k2J8DU7qZSPyOHj3KggULQseQCql+aRpPM1k54SlEMli6dGnoCJKD6pemMZuJuz83GUFExmv//v2sW7du7A1lSlL90lSVmxZjYmZXA1evXr06dBSp0OLFizlw4ACzZs0652PGjBmh48kY1q5dGzqCTIDMzcTMfo3izYm/DNSWr3f3KT0Huwbg4/fTn/6UU6eGnwNtxowZwzaZ2bNnD7t86DozPYB6Mmzfvp1NmzaFjiFVlvUO+CuAJ4AnKc7N/vdAHcXnZT3HKHO6i1TL4sWLaWtrG3bdwMAAAwMDnDlzJvN+Z86cmakRDS6fOXOmGlEGaiRpynpk8ofAnwP/FegDPuruzWa2Bvgm8I0q5xM5x+HDhydkv/39/fT39486m9xIxnsUVL5+5sxpd6ZZk2MlKutP8lrgvwEFipcBzwRw9z1mdjfFZvO31QwoUm7JkiUjHpmE0tfXV9Gd3WaW6SgohfEhNZI0ZW0mBYrT4nrpKb/LgX8qrTsErKpmOJFB3d3dbN68mQceeIAjR45w/vnnc8UVV3Dddddx3nnnhY5XMXent7eX3t7ezK+tqakZ93hQ+UdNTbiHXzQ3N+tUV4KyNpNngRWlr5uAD5rZD4B+4ENAW9WSiZR0d3dz+eWX09ra+tJYyMmTJ9myZQtPP/009913X9QNpVKFQoGenh56enoyv3ak8aHxnKbLOz60cePGXK+XqSlrM/kScGnp649RHIgfnMNkAHhnlXJNGF0aHJ/Nmzef1UgG9fb20tHRwZYtW7jhhhsCpYtTtcaHxnuKrqenh/vvv/+lI8uFCxdy6623cscdd+gpwokw9/Inymd4sdky4M0Ur+h60t0rnk53sjU2NnpTU1PoGDIOixYtoqura9RtBgezZ8yYwcyZM8/6erhlI60fbZvBcYos/854Xxfr+Md4nD59mttvv53nn3/+rNN5tbW1rFq1iq1bt6qhRMTMtrl7Y/nyXJeSuPsB4PN59iEyliNHjoy5TaUD4FNFTU1NpuY32KCyNq2xtsnTZEcah9myZcs5jQTgzJkztLa2snnzZu65557J+M8sEyjTkYmZNVN8kONX3H1irs+cJDoyicdYRyYXXHABDz30EAMDA/T39zMwMEBfX99Z3w+e1hlt2XDfD7d9ln2OJ0t/f/8k/tecOEMb4tCGc+TIEUb7PbNo0SI6OzsnMankUa0jk8PAvcC9ZvYkxcbyqLtnv0NMZJxuvfVW7r333mFvRJw9ezZXXHEFc+bMCZCsOtydQqEw4U1rvI2t0gZaKBQoFAqZjxDHc+QpU1/WmRbfYmaLKQ603wh8GXjRzB4B/trdvzMBGWWau+OOO/ja1752ziD87NmzefnLX851110XMF1+Zhb9uEl5QxzatG677Ta6u7tHfO3ChQsnMalMlMwXm7t7p7v/SekwZz3FO+LfADxpZnrCsFTd3Llz2bp1K3feeSeLFi3CzFiwYAE33ngjn/3sZ6mvr4/6F3EKBhvinDlzqKurY968edTX17N48WKuuuoqZs+ePezramtrueWWWyY5rUyEXFdzAZhZLfDrwCeBpe4exf/VGjOJV1tbGytWrDhn+eAplt7e3kyfBwYGJv9NTCO6mistVb+ay8xeD7wLuA6YS/FO+D+uOOEk0X0m8WtoaBh2eU1NDXPmzMk8fjJ4WmY8jUdNKLvzzjuP++67jy1btvCNb3yDkydP0tDQwC233KL7TBKS9WquX6E4VvJO4EKKTwr+a+CL7r53QhJOEB2ZxKulpWVKzIkx2ISyNKDe3l4KhULo6EGtWrWKSy+9dOwNZUqq1pHJT4ETwMMUG4geOS+TbqocVQ4OmtfWnjOtz6gGBgYyN6C+vr5kmtDFF0/pKY+kQlmbyW8Cj7t79ocBiVTJrl272LBhQ+gYFZsxYwbnnXde5ueJlTeh0RrPVG5CzzzzjJ7PlaCslwY/PFFBRMYr5kaSR6VNqL+/P/NRUG9v76g3GuZx2WWXTch+JaxKpu29GLie4uPny4/v3d3fV41gIiPR5ErZDN6RXkkTytqA+vr6xmxCP/nJT2hsPOeUu0Qu67S911AcL6kBOoHy010T86eMyBBqJJNjsAllNdapNw2+pynrT8ongO8CN7j7C9WPIzI2HZlMbYOPnq+rqxt2veqXpqzN5GLgQ2okEpJ+EcVN9UtT1septABRP0jHzK42swdPnDgROopUaOfOnaEjSA6qX5qyNpM7gY+UBuGj5O5PuPtN8+bNCx1FKrRmzZrQESQH1S9NWU9z3U3xyOQZM9sLHC1b7+7+2moEExlJe3s7l1xySegYUiHVL01Zm8kA8OxEBBEZryVLloSOIDmofmnKetPi6yYoh8i4HT9+nAsuuCB0DKmQ6pemzPOZiISW9VlYMrWofmnK3EzM7EIz+5SZNZnZ/tKThDGzD5rZq6ofUUREprpMzcTM1gM7Kc5jcojiI1UGp1C7CLitqulEhjHcXPASD9UvTVmPTP4n8AywkuKkWDZk3dPA5VXKJTKi+fPnh44gOah+acraTP498El37+bc53AdBl5elVQiozh8+HDoCJKD6pemrM1ktIkRGoDTObKIjMvy5ctDR5AcVL80ZW0m/wS8d4R11wM/yBdHZGx79uwJHUFyUP3SlPWmxY8DT5rZPwBfpniq641mdhvwNuA1Vc5XdWZ2NXD1VJn6VbLT5EpxU/3SlOnIxN2fAq6lOAD/EMUB+E8C/wG41t1/VO2A1aZnc8Vv27ZtoSNIDqpfmqzSqTnNbDWwGDji7tE9YqWxsdGbmppCxxARiYqZbXP3c6bKrPgOeHff5+5Px9hIJG76yzZuql+ask7b++5RVheAE8BP3P1ArlQio9DkSnFT/dKUdQD+C/zi/pKhNywOXVYws68C73X33nzxRM61Y8cONmzYEDqGVEj1S1PW01yvBp4D/gx4LbC29PkBoB24EvgwxSu77q5aSpEh1q9fHzqC5KD6pSnrkcntwN+4+0eGLNsDfN/MXgRucve3mdkFwA3AR4bbiUge+/btY+3ataFjSIVUvzRlPTJ5E/CtEdZ9G3hD6evvARdWGkpkNMuWLQsdQXJQ/dKUtZn0AiONnr2ytH5wvz+vNJTIaLq6ukJHkBxUvzRlPc31MHCPmQ0AjwCdFO81+Q2KYyQPlbbbiKb3lQkyd+7c0BEkB9UvTVmbye8B5wP3lj6G+jLwodLXPwN+mC+ayPD6+vpCR5AcVL80ZZ0D/jRwo5n9EfAq4BVAB/Ajd98zZLuvVzWlyBCFwmgPr5apTvVLU9YjEwBKjUOP/pQg6urqQkeQHFS/NI3ZTMxsOdDh7n2lr0fl7u1VSSYygqNHj7JgwYLQMaRCql+axnNksh/4txTnMmnj3BkWy83ImUlkVEuXLg0dQXJQ/dI0nmbyX4DWIV9X9phhkSrZv38/69atCx1DKqT6pWnMZuLufzXk6y+MtJ2ZzQA0SYhMON09HTfVL01j3rRoZkfNbNOQ783MHjezi8s2bQReqHbAajOzq83swRMnToSOIhXavn176AiSg+qXpvHcAT+fs49gaoCrSsujo5kW47dp06axN5IpS/VLU8WTY4mEosmV4qb6pUnNRKKjyZXipvqlSc1EotPc3Bw6guSg+qVpvHfAXzhkwH3GkGXHh2yj50rLpNi4cWPoCJKD6pem8TaTR4ZZ9mjZ94buQZFJ0NLSovsUIqb6pWk8zeS9E55CJIOVK1eGjiA5qH5pynTToshUcOjQIVatWhU6hlRI9UuTBuAlOvX19aEjSA6qX5rUTCQ6p06dCh1BclD90qRmItGpqdGPbcxUvzSpqhKdWbNmhY4gOah+aVIzkeh0d3eHjiA5qH5pUjOR6DQ0NISOIDmofmlSM5HoHDhwIHQEyUH1S5OaiURn9erVoSNIDqpfmtRMJDq7du0KHUFyUP3SpGYi0dmwYUPoCJKD6pcmNROJjiZXipvqlyY1E4mOJleKm+qXJjUTiY7+so2b6pcmNROJjv6yjZvql6bom4mZfcTMnjWzgpldGzqPTLydO3eGjiA5qH5pir6ZAN8CrgC+FzqITI41a9aEjiA5qH5pmvRmYmbLzOzTZvZDMztlZm5mK0bY9pfM7BEzO2FmJ81si5ktH7qNu//I3VsnJbxMCe3t7aEjSA6qX5pCHJmsBq4HjgHfH2kjM6sDvg2sBX4LeBdwCfAdM3vZJOSUKWrJkiWhI0gOql+aQjST77n7Ene/Anh4lO0+AFwMXOvuj7r7Y8BbgYuA356EnDJFHT9+PHQEyUH1S9OkNxN3L4xz07cCW91935DX7gd+AFwzEdkkDrW1taEjSA6qX5qm8gD8euBnwyzfBayrZIdmdpOZNZlZU0dHB11dXXR0dHDw4EGOHTtGa2srp0+fZvfu3RQKBZqbm4FfXBff3NxMoVBg9+7dnD59mtbWVo4dO8bBgwcZ3F9bWxvd3d20tLTQ39/Pjh07ztrH4OedO3fS09PD3r17OXnyJO3t7XR2dtLZ2Ul7ezsnT55k79699PT0vHT1S/k+duzYQX9/Py0tLXR3d9PW1jYt3lNHR0dy7ynFOo30nvbu3Zvce0qxTiO9p5GYu4+4cqKZ2fuBzwEr3b2tbF0v8Cl3v6ts+SeAu9x9Zun7jwI3A4uAF4EzQKO7Pz/av93Y2OhNTU3Veisyidrb21m+fPnYG8qUpPrFzcy2uXtj+fKpfGQCMFyns7M2cP+Euy9z9znu3lD6etRGInGbP39+6AiSg+qXpqncTI4B9cMsX1BaJ9PU4cOHQ0eQHFS/NE3lZrKL4rhJuXXA7knOIlOITpHETfVL01RuJo8Dl5vZxYMLSjc3vrq0riJmdrWZPXjixIn8CSWIPXv2hI4gOah+aQoyAG9mby99+QaKg+e3Ai8AL7j7U6VtXgbsAE4DH6U4fvJx4HzgX7l7d54MGoAXEcluqg3AP1z6uLn0/QOl7+8Z3MDdfw68HtgDfBH4ErAfeH3eRiJx0yPM46b6pSnopcEh6chERCS7qXZkIlIx/WUbN9UvTdOumWgAPn6aXCluql+apl0zcfcn3P2mefPmhY4iFRp8/ITESfVL07RrJhK/9euHu/1IYqH6pUnNRKKzb9++sTeSKUv1S5OaiURn2bJloSNIDqpfmqZdM9EAfPy6urpCR5AcVL80TbtmogH4+M2dOzd0BMlB9UvTtGsmEr++vr7QESQH1S9NaiYSnUJhvDM/y1Sk+qVJzUSiU1dXFzqC5KD6pUnNRKJz9OjR0BEkB9UvTWomEp2lS5eGjiA5qH5pmnbNRJcGx2///v2hI0gOql+a9Ah6iU6hUKCmZtr9HZQM1S9uegS9JGP79u2hI0gOql+a1EwkOps2bQodQXJQ/dKkZiLR0eRKcVP90qRmItHR5EpxU/3SpGYi0Wlubg4dQXJQ/dKkZiLR2bhxY+gIkoPql6Zp10x0n0n8WlpaQkeQHFS/NE27ZqJH0Mdv5cqVoSNIDqpfmqZdM5H4HTp0KHQEyUH1S5OaiUSnvr4+dATJQfVLk5qJROfUqVOhI0gOql+a1EwkOnquU9xUvzSpqhKdWbNmhY4gOah+aZq2Tw02sxeA50LnkIo0AF2hQ0jFVL+4XeTui8oXTttmIvEys6bhHoEtcVD90qTTXCIikpuaiYiI5KZmIjF6MHQAyUX1S5DGTEREJDcdmYiISG5qJiIikpuaiUTBzJaZ2afN7IdmdsrM3MxWhM4lYzOzt5vZ18zsOTM7bWbPmtkfm9n5obNJ9aiZSCxWA9cDx4DvB84i2dwODAAfAd4MfAa4BfhHM9PvoERoAF6iYGY17l4off1+4HPASndvCxpMxmRmi9z9hbJl7wb+CniDu387TDKpJv1VIFEYbCQSn/JGUvLj0ucLJzOLTBw1ExEJ4bWlz88ETSFVo2YiIpPKzC4E/gh40t2bQueR6lAzEZFJY2ZzgceAfuC9geNIFc0MHUBEpgczqwUeBy4GXuvuBwJHkipSMxGRCWdms4CvAf8GeKO77wwcSapMzUREJlTpXpIvAW8ArnT3rYEjyQRQM5FomNnbS1++svT5LaUZM19w96cCxZKx/TnwG8B/B35uZpcPWXdAp7vSoJsWJRpmNtIP61Pu/rrJzCLjZ2ZtwEUjrL7H3e+evDQyUdRMREQkN10aLCIiuamZiIhIbmomIiKSm5qJiIjkpmYiIiK5qZmIiEhuaiYiOZnZe0rTCK+u0v6+a2bfrca+RCaLmomIiOSmZiIiIrmpmYhUWek01f8zszeaWbOZnTKzn5nZtcNs+5/NrMXMesxsl5m9bYR9NpjZZ8zsYGnbFjO7acj6V5hZp5n9n7LX3VQ6BXdl1d+oyBBqJiITYxXwv4BPAdcBHcAjQ8dVzOyNwJeBvaVtNpde88tDd2RmFwA/AK4E7i59fgL4jJn9LoC7d1CcbOpaM7u59LpLgfuBT7v71yfqjYqAnhosMlEagNe4+14AM2um2FCuB/5HaZt7gBbgGncvlLZ7BtgKPDtkX7dRfFDiZYP7A540s/nAx8zsM+7e7+5fN7M/BT5lZj8GHgL2AXdO4PsUAXRkIjJR9g75xY+7dwKdwHIAM5sB/GvgkcFGUtruR0Bb2b7eDPwI2G9mMwc/gG8CC4F1Q7a9E9hD8UjmEuAd7n6myu9N5BxqJiIT4+gwy3qA2tLXDcAs4PAw25UvWwy8Bugr+3i4tH7h4Ibu3gN8FZgD/IO7764wv0gmOs0lEkYXxYawZJh1S4Dnhnx/hOJRzW0j7OulU2Jmth74Q6AJuMbMrnH3x6qSWGQUOjIRCcDdB4AfA28vTWsLgJm9ClhRtvnfA2uBdndvGubjxdJra4GvUByHeTWwBfgLM1s68e9Ipjs1E5FwPkaxSTxqZlea2XuAvwWeL9vufopHJt83s5vN7D+a2VVmdruZDT3q2EzxKrJ3uHsv8AHgNPDFoQ1LZCLoB0wkEHd/EriB4qXAW4A7gA9y9pVcuPsJ4N8Bfwf8PsWB94eAa4DvAJjZVcDvALe5+7Ol1x0FbgReV9q3yITRtL0iIpKbjkxERCQ3NRMREclNzURERHJTMxERkdzUTEREJDc1ExERyU3NREREclMzERGR3P4/GSo2KkoyaFoAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEQCAYAAAB1OJkXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfJUlEQVR4nO3de3RdZ3nn8e8j3xThxLYs2+C4jh07rmM3Y9dohswwAwyXKeRCQkrTgQQKA6RJVrvClCQNlA5JYaasOEM6pQ2LQFM6FChN8OQylNKGS2AIpsjCxthRbKtWVNuKFfkaYVu388wf5yjIx7rts4/06n31+6ylJWnvfbZ/J4+iR3u/e+/X3B0REZE8akIHEBGR+KmZiIhIbmomIiKSm5qJiIjkpmYiIiK5zQwdIJSGhgZfsWJF6BgiIlHZtm1bl7svKl8+bZvJihUraGpqCh1DKtDa2sqqVatCx5AKqX5xM7Pnhluu01wSnfr6+tARJAfVL01qJhKdU6dOhY4gOah+aVIzkejU1OjHNmaqX5pUVYnOrFmzQkeQHFS/NKmZSHS6u7tDR5AcVL80TbtmYmZXm9mDJ06cCB1FKtTQ0BA6guSg+qVp2jUTd3/C3W+aN29e6ChSoQMHDoSOIDmofmmads1E4rd69erQESQH1S9NaiYSnV27doWOIDmofmlSM5HobNiwIXQEyUH1S5OaiURn27ZtoSNIDqpfmtRMJDqvfOUrQ0eQHFS/NE27ZqJLg+Onv2zjpvqlydw9dIYgGhsbXU8NFhHJxsy2uXtj+fJpd2Qi8du5c2foCJKD6pcmNROJzpo1a0JHkBxUvzSpmUh02tvbQ0eQHFS/NKmZSHSWLFkSOoLkoPqlSc1EonP8+PHQESQH1S9NaiYSndra2tARJAfVL01qJiIikpuaiUTnzJkzoSNIDqpfmqZdM9Ed8PGbP39+6AiSg+qXpmnXTDQ5VvwOHz4cOoLkoPqlado1E4nf8uXLQ0eQHFS/NKmZSHT27NkTOoLkoPqlSc1EonPZZZeFjiA5qH5pUjOR6OgR5nFT/dKkZiLR0eRKcVP90qRmItHRX7ZxU/3SpGYi0dFftnFT/dKkZiLR2bFjR+gIkoPqlyY1E4nO+vXrQ0eQHFS/NKmZSHT27dsXOoLkoPqlado1Ez2bK37Lli0LHUFyUP3SNO2aiZ7NFb+urq7QESQH1S9N066ZSPzmzp0bOoLkoPqlSc1EotPX1xc6guSg+qVJzUSiUygUQkeQHFS/NKmZSHTq6upCR5AcVL80qZlIdI4ePRo6guSg+qVJzUSis3Tp0tARJAfVL01qJhKd/fv3h44gOah+aVIzkeisXbs2dATJQfVLk5qJRGf79u2hI0gOql+a1EwkOps2bQodQXJQ/dKkZiLR0eRKcVP90qRmItHR5EpxU/3SpGYi0Wlubg4dQXJQ/dKkZiLR2bhxY+gIkoPqlyY1E4lOS0tL6AiSg+qXpmnXTDQ5VvxWrlwZOoLkoPqlado1E02OFb9Dhw6FjiA5qH5pmnbNROJXX18fOoLkoPqlSc1EonPq1KnQESQH1S9NaiYSnZoa/djGTPVLk6oq0Zk1a1boCJKD6pcmNROJTnd3d+gIkoPqlyY1E4lOQ0ND6AiSg+qXJjUTic6BAwdCR5AcVL80qZlIdFavXh06guSg+qVJzUSis2vXrtARJAfVL01qJhKdDRs2hI4gOah+acrUTMysxsxmli37NTP7kJn9anWjiQxPkyvFTfVL08yxNznLV4Ae4N0AZnYz8EBpXZ+ZXenuT1Yxn8g5NLlS3FS/NGU9zXU58HdDvr8D+DwwD9gC/EGVcomMSH/Zxk31S1PWZrIYOAhgZquBlcCfufuLwF8Cl1U3nsi59Jdt3FS/NGVtJieBhaWvXwd0uftPS98PALVVyiUyop07d4aOIDmofmnKOmbyNHCXmfUDH+TsU16rAd2NJBNuzZo1oSNIDqpfmrIemdwJ1AOPUzwKuXvIut8EflidWCIja29vDx1BclD90pTpyMTd9wJrzGyhux8pW30b8HzVkomMYMmSJaEjSA6qX5oqumnR3Y+Y2Vwzu8jMZpWW7XT3F6obT+Rcx48fDx1BclD90pS5mZjZVWbWDJwAWildwWVmnzezd1Y5n8g5amt1nUfMVL80Zb0D/lrgMaAL+P2y1+8HfqtqyUREJBpZj0w+Bvylu/8n4E/K1v0M+JVqhBIZzZkzZ0JHkBxUvzRlbSaXAl8tfe1l647xi3tQJoWZ1ZrZo2b2jJltN7NvmtnFk5lBJt/8+fNDR5AcVL80VXLT4kjTpK0AQgzAf8bdL3X3jcATFB/vIgk7fPhw6AiSg+qXpqzN5B+BD5vZ/CHL3MzmAL8DfGOsHZjZMjP7tJn90MxOmZmb2YoRtv0lM3vEzE6Y2Ukz22Jmy1/6h93PuPs3h7xkK6Ajk8QtX7587I1kylL90pS1mfwB8HLgWYpHAA7cBWwHlnH2TYwjWQ1cT/G02PdH2sjM6oBvA2spDuy/C7gE+I6ZvWyEl/0uxQsEJGF79uwJHUFyUP3SlKmZuHsbsAn4v8CbKD6P6zUUjwhe5e6HxrGb77n7Ene/Anh4lO0+QPEo41p3f9TdHwPeClwE/Hb5xmb2YWAN8OHxvyOJ0WWX6XmiMVP90pT5PhN3P+Du73P3Ze4+291f4e7vdfd/GefrC+P8p94KbHX3fUNeux/4AXDN0A3N7Hbg14G3uPupce5fIqVHmMdN9UvTVJ62dz3Fy43L7QLWDX5jZr8HvAN4k7sfH22HZnaTmTWZWVNHRwddXV10dHRw8OBBjh07RmtrK6dPn2b37t0UCgWam5uBX/zwNzc3UygU2L17N6dPn6a1tZVjx45x8OBBBvfX1tZGd3c3LS0t9Pf3s2PHjrP2Mfh5586d9PT0sHfvXk6ePEl7ezudnZ10dnbS3t7OyZMn2bt3Lz09PS89ZbV8Hzt27KC/v5+Wlha6u7tpa2ubFu9p/vz5yb2nFOs00nsalNJ7SrFOI72nkZh7+RW+IzOzh8bYxN39fRn2937gc8DK0im0oet6gU+5+11lyz8B3OXuM81sGfAvwD8DL5Y26Xf3xrH+7cbGRm9qahpvVJlCtm3bpjkxIqb6xc3Mtg33OzbrI+hfz7n3l9QD5wPHSx/VNFyns5dWuh8Y+r1MD/pFFDfVL01ZB+BXuPvKso95FCfKep7iuEW1HKPYqMotKK2TaWrwtIDESfVLU1XGTNz9e8D9wKersb+SXRTHTcqtA3ZXulMzu9rMHjxx4kTFwSSs9euH+7GQWKh+aarmAPw/A79axf09Dlw+9PEopZsbX11aVxF3f8Ldb5o3b17+hBLEvn37xt5IpizVL01Zx0yGZWYzgfcwzml7zeztpS8HT56+xcxeAF5w96dKyz5H8a76x8zsoxTHTz5OccD9s9XILXFatmxZ6AiSg+qXpkzNxMy+Pczi2RRvFlwI3DzOXZXfrPhA6fNTFMdfcPefm9nrKZ4++yLFgfZvAR909+4suSUtXV1dzJ07N3QMqZDql6asRyY1nHuF1YvAFuBv3P2749mJu4/rCix3b6e6g/qSAP0iipvql6asc8C/boJyiIxbX19f6AiSg+qXpql8B/yE0NVc8SsUxvtEHpmKVL80jXlkYmbvzrJDd//flceZeO7+BPBEY2PjB0JnkcrU1dWFjiA5qH5pGs9pri9k2J8DU7qZSPyOHj3KggULQseQCql+aRpPM1k54SlEMli6dGnoCJKD6pemMZuJuz83GUFExmv//v2sW7du7A1lSlL90lSVmxZjYmZXA1evXr06dBSp0OLFizlw4ACzZs0652PGjBmh48kY1q5dGzqCTIDMzcTMfo3izYm/DNSWr3f3KT0Huwbg4/fTn/6UU6eGnwNtxowZwzaZ2bNnD7t86DozPYB6Mmzfvp1NmzaFjiFVlvUO+CuAJ4AnKc7N/vdAHcXnZT3HKHO6i1TL4sWLaWtrG3bdwMAAAwMDnDlzJvN+Z86cmakRDS6fOXOmGlEGaiRpynpk8ofAnwP/FegDPuruzWa2Bvgm8I0q5xM5x+HDhydkv/39/fT39486m9xIxnsUVL5+5sxpd6ZZk2MlKutP8lrgvwEFipcBzwRw9z1mdjfFZvO31QwoUm7JkiUjHpmE0tfXV9Gd3WaW6SgohfEhNZI0ZW0mBYrT4nrpKb/LgX8qrTsErKpmOJFB3d3dbN68mQceeIAjR45w/vnnc8UVV3Dddddx3nnnhY5XMXent7eX3t7ezK+tqakZ93hQ+UdNTbiHXzQ3N+tUV4KyNpNngRWlr5uAD5rZD4B+4ENAW9WSiZR0d3dz+eWX09ra+tJYyMmTJ9myZQtPP/009913X9QNpVKFQoGenh56enoyv3ak8aHxnKbLOz60cePGXK+XqSlrM/kScGnp649RHIgfnMNkAHhnlXJNGF0aHJ/Nmzef1UgG9fb20tHRwZYtW7jhhhsCpYtTtcaHxnuKrqenh/vvv/+lI8uFCxdy6623cscdd+gpwokw9/Inymd4sdky4M0Ur+h60t0rnk53sjU2NnpTU1PoGDIOixYtoqura9RtBgezZ8yYwcyZM8/6erhlI60fbZvBcYos/854Xxfr+Md4nD59mttvv53nn3/+rNN5tbW1rFq1iq1bt6qhRMTMtrl7Y/nyXJeSuPsB4PN59iEyliNHjoy5TaUD4FNFTU1NpuY32KCyNq2xtsnTZEcah9myZcs5jQTgzJkztLa2snnzZu65557J+M8sEyjTkYmZNVN8kONX3H1irs+cJDoyicdYRyYXXHABDz30EAMDA/T39zMwMEBfX99Z3w+e1hlt2XDfD7d9ln2OJ0t/f/8k/tecOEMb4tCGc+TIEUb7PbNo0SI6OzsnMankUa0jk8PAvcC9ZvYkxcbyqLtnv0NMZJxuvfVW7r333mFvRJw9ezZXXHEFc+bMCZCsOtydQqEw4U1rvI2t0gZaKBQoFAqZjxDHc+QpU1/WmRbfYmaLKQ603wh8GXjRzB4B/trdvzMBGWWau+OOO/ja1752ziD87NmzefnLX851110XMF1+Zhb9uEl5QxzatG677Ta6u7tHfO3ChQsnMalMlMwXm7t7p7v/SekwZz3FO+LfADxpZnrCsFTd3Llz2bp1K3feeSeLFi3CzFiwYAE33ngjn/3sZ6mvr4/6F3EKBhvinDlzqKurY968edTX17N48WKuuuoqZs+ePezramtrueWWWyY5rUyEXFdzAZhZLfDrwCeBpe4exf/VGjOJV1tbGytWrDhn+eAplt7e3kyfBwYGJv9NTCO6mistVb+ay8xeD7wLuA6YS/FO+D+uOOEk0X0m8WtoaBh2eU1NDXPmzMk8fjJ4WmY8jUdNKLvzzjuP++67jy1btvCNb3yDkydP0tDQwC233KL7TBKS9WquX6E4VvJO4EKKTwr+a+CL7r53QhJOEB2ZxKulpWVKzIkx2ISyNKDe3l4KhULo6EGtWrWKSy+9dOwNZUqq1pHJT4ETwMMUG4geOS+TbqocVQ4OmtfWnjOtz6gGBgYyN6C+vr5kmtDFF0/pKY+kQlmbyW8Cj7t79ocBiVTJrl272LBhQ+gYFZsxYwbnnXde5ueJlTeh0RrPVG5CzzzzjJ7PlaCslwY/PFFBRMYr5kaSR6VNqL+/P/NRUG9v76g3GuZx2WWXTch+JaxKpu29GLie4uPny4/v3d3fV41gIiPR5ErZDN6RXkkTytqA+vr6xmxCP/nJT2hsPOeUu0Qu67S911AcL6kBOoHy010T86eMyBBqJJNjsAllNdapNw2+pynrT8ongO8CN7j7C9WPIzI2HZlMbYOPnq+rqxt2veqXpqzN5GLgQ2okEpJ+EcVN9UtT1septABRP0jHzK42swdPnDgROopUaOfOnaEjSA6qX5qyNpM7gY+UBuGj5O5PuPtN8+bNCx1FKrRmzZrQESQH1S9NWU9z3U3xyOQZM9sLHC1b7+7+2moEExlJe3s7l1xySegYUiHVL01Zm8kA8OxEBBEZryVLloSOIDmofmnKetPi6yYoh8i4HT9+nAsuuCB0DKmQ6pemzPOZiISW9VlYMrWofmnK3EzM7EIz+5SZNZnZ/tKThDGzD5rZq6ofUUREprpMzcTM1gM7Kc5jcojiI1UGp1C7CLitqulEhjHcXPASD9UvTVmPTP4n8AywkuKkWDZk3dPA5VXKJTKi+fPnh44gOah+acraTP498El37+bc53AdBl5elVQiozh8+HDoCJKD6pemrM1ktIkRGoDTObKIjMvy5ctDR5AcVL80ZW0m/wS8d4R11wM/yBdHZGx79uwJHUFyUP3SlPWmxY8DT5rZPwBfpniq641mdhvwNuA1Vc5XdWZ2NXD1VJn6VbLT5EpxU/3SlOnIxN2fAq6lOAD/EMUB+E8C/wG41t1/VO2A1aZnc8Vv27ZtoSNIDqpfmqzSqTnNbDWwGDji7tE9YqWxsdGbmppCxxARiYqZbXP3c6bKrPgOeHff5+5Px9hIJG76yzZuql+ask7b++5RVheAE8BP3P1ArlQio9DkSnFT/dKUdQD+C/zi/pKhNywOXVYws68C73X33nzxRM61Y8cONmzYEDqGVEj1S1PW01yvBp4D/gx4LbC29PkBoB24EvgwxSu77q5aSpEh1q9fHzqC5KD6pSnrkcntwN+4+0eGLNsDfN/MXgRucve3mdkFwA3AR4bbiUge+/btY+3ataFjSIVUvzRlPTJ5E/CtEdZ9G3hD6evvARdWGkpkNMuWLQsdQXJQ/dKUtZn0AiONnr2ytH5wvz+vNJTIaLq6ukJHkBxUvzRlPc31MHCPmQ0AjwCdFO81+Q2KYyQPlbbbiKb3lQkyd+7c0BEkB9UvTVmbye8B5wP3lj6G+jLwodLXPwN+mC+ayPD6+vpCR5AcVL80ZZ0D/jRwo5n9EfAq4BVAB/Ajd98zZLuvVzWlyBCFwmgPr5apTvVLU9YjEwBKjUOP/pQg6urqQkeQHFS/NI3ZTMxsOdDh7n2lr0fl7u1VSSYygqNHj7JgwYLQMaRCql+axnNksh/4txTnMmnj3BkWy83ImUlkVEuXLg0dQXJQ/dI0nmbyX4DWIV9X9phhkSrZv38/69atCx1DKqT6pWnMZuLufzXk6y+MtJ2ZzQA0SYhMON09HTfVL01j3rRoZkfNbNOQ783MHjezi8s2bQReqHbAajOzq83swRMnToSOIhXavn176AiSg+qXpvHcAT+fs49gaoCrSsujo5kW47dp06axN5IpS/VLU8WTY4mEosmV4qb6pUnNRKKjyZXipvqlSc1EotPc3Bw6guSg+qVpvHfAXzhkwH3GkGXHh2yj50rLpNi4cWPoCJKD6pem8TaTR4ZZ9mjZ94buQZFJ0NLSovsUIqb6pWk8zeS9E55CJIOVK1eGjiA5qH5pynTToshUcOjQIVatWhU6hlRI9UuTBuAlOvX19aEjSA6qX5rUTCQ6p06dCh1BclD90qRmItGpqdGPbcxUvzSpqhKdWbNmhY4gOah+aVIzkeh0d3eHjiA5qH5pUjOR6DQ0NISOIDmofmlSM5HoHDhwIHQEyUH1S5OaiURn9erVoSNIDqpfmtRMJDq7du0KHUFyUP3SpGYi0dmwYUPoCJKD6pcmNROJjiZXipvqlyY1E4mOJleKm+qXJjUTiY7+so2b6pcmNROJjv6yjZvql6bom4mZfcTMnjWzgpldGzqPTLydO3eGjiA5qH5pir6ZAN8CrgC+FzqITI41a9aEjiA5qH5pmvRmYmbLzOzTZvZDMztlZm5mK0bY9pfM7BEzO2FmJ81si5ktH7qNu//I3VsnJbxMCe3t7aEjSA6qX5pCHJmsBq4HjgHfH2kjM6sDvg2sBX4LeBdwCfAdM3vZJOSUKWrJkiWhI0gOql+aQjST77n7Ene/Anh4lO0+AFwMXOvuj7r7Y8BbgYuA356EnDJFHT9+PHQEyUH1S9OkNxN3L4xz07cCW91935DX7gd+AFwzEdkkDrW1taEjSA6qX5qm8gD8euBnwyzfBayrZIdmdpOZNZlZU0dHB11dXXR0dHDw4EGOHTtGa2srp0+fZvfu3RQKBZqbm4FfXBff3NxMoVBg9+7dnD59mtbWVo4dO8bBgwcZ3F9bWxvd3d20tLTQ39/Pjh07ztrH4OedO3fS09PD3r17OXnyJO3t7XR2dtLZ2Ul7ezsnT55k79699PT0vHT1S/k+duzYQX9/Py0tLXR3d9PW1jYt3lNHR0dy7ynFOo30nvbu3Zvce0qxTiO9p5GYu4+4cqKZ2fuBzwEr3b2tbF0v8Cl3v6ts+SeAu9x9Zun7jwI3A4uAF4EzQKO7Pz/av93Y2OhNTU3Veisyidrb21m+fPnYG8qUpPrFzcy2uXtj+fKpfGQCMFyns7M2cP+Euy9z9znu3lD6etRGInGbP39+6AiSg+qXpqncTI4B9cMsX1BaJ9PU4cOHQ0eQHFS/NE3lZrKL4rhJuXXA7knOIlOITpHETfVL01RuJo8Dl5vZxYMLSjc3vrq0riJmdrWZPXjixIn8CSWIPXv2hI4gOah+aQoyAG9mby99+QaKg+e3Ai8AL7j7U6VtXgbsAE4DH6U4fvJx4HzgX7l7d54MGoAXEcluqg3AP1z6uLn0/QOl7+8Z3MDdfw68HtgDfBH4ErAfeH3eRiJx0yPM46b6pSnopcEh6chERCS7qXZkIlIx/WUbN9UvTdOumWgAPn6aXCluql+apl0zcfcn3P2mefPmhY4iFRp8/ITESfVL07RrJhK/9euHu/1IYqH6pUnNRKKzb9++sTeSKUv1S5OaiURn2bJloSNIDqpfmqZdM9EAfPy6urpCR5AcVL80TbtmogH4+M2dOzd0BMlB9UvTtGsmEr++vr7QESQH1S9NaiYSnUJhvDM/y1Sk+qVJzUSiU1dXFzqC5KD6pUnNRKJz9OjR0BEkB9UvTWomEp2lS5eGjiA5qH5pmnbNRJcGx2///v2hI0gOql+a9Ah6iU6hUKCmZtr9HZQM1S9uegS9JGP79u2hI0gOql+a1EwkOps2bQodQXJQ/dKkZiLR0eRKcVP90qRmItHR5EpxU/3SpGYi0Wlubg4dQXJQ/dKkZiLR2bhxY+gIkoPql6Zp10x0n0n8WlpaQkeQHFS/NE27ZqJH0Mdv5cqVoSNIDqpfmqZdM5H4HTp0KHQEyUH1S5OaiUSnvr4+dATJQfVLk5qJROfUqVOhI0gOql+a1EwkOnquU9xUvzSpqhKdWbNmhY4gOah+aZq2Tw02sxeA50LnkIo0AF2hQ0jFVL+4XeTui8oXTttmIvEys6bhHoEtcVD90qTTXCIikpuaiYiI5KZmIjF6MHQAyUX1S5DGTEREJDcdmYiISG5qJiIikpuaiUTBzJaZ2afN7IdmdsrM3MxWhM4lYzOzt5vZ18zsOTM7bWbPmtkfm9n5obNJ9aiZSCxWA9cDx4DvB84i2dwODAAfAd4MfAa4BfhHM9PvoERoAF6iYGY17l4off1+4HPASndvCxpMxmRmi9z9hbJl7wb+CniDu387TDKpJv1VIFEYbCQSn/JGUvLj0ucLJzOLTBw1ExEJ4bWlz88ETSFVo2YiIpPKzC4E/gh40t2bQueR6lAzEZFJY2ZzgceAfuC9geNIFc0MHUBEpgczqwUeBy4GXuvuBwJHkipSMxGRCWdms4CvAf8GeKO77wwcSapMzUREJlTpXpIvAW8ArnT3rYEjyQRQM5FomNnbS1++svT5LaUZM19w96cCxZKx/TnwG8B/B35uZpcPWXdAp7vSoJsWJRpmNtIP61Pu/rrJzCLjZ2ZtwEUjrL7H3e+evDQyUdRMREQkN10aLCIiuamZiIhIbmomIiKSm5qJiIjkpmYiIiK5qZmIiEhuaiYiOZnZe0rTCK+u0v6+a2bfrca+RCaLmomIiOSmZiIiIrmpmYhUWek01f8zszeaWbOZnTKzn5nZtcNs+5/NrMXMesxsl5m9bYR9NpjZZ8zsYGnbFjO7acj6V5hZp5n9n7LX3VQ6BXdl1d+oyBBqJiITYxXwv4BPAdcBHcAjQ8dVzOyNwJeBvaVtNpde88tDd2RmFwA/AK4E7i59fgL4jJn9LoC7d1CcbOpaM7u59LpLgfuBT7v71yfqjYqAnhosMlEagNe4+14AM2um2FCuB/5HaZt7gBbgGncvlLZ7BtgKPDtkX7dRfFDiZYP7A540s/nAx8zsM+7e7+5fN7M/BT5lZj8GHgL2AXdO4PsUAXRkIjJR9g75xY+7dwKdwHIAM5sB/GvgkcFGUtruR0Bb2b7eDPwI2G9mMwc/gG8CC4F1Q7a9E9hD8UjmEuAd7n6myu9N5BxqJiIT4+gwy3qA2tLXDcAs4PAw25UvWwy8Bugr+3i4tH7h4Ibu3gN8FZgD/IO7764wv0gmOs0lEkYXxYawZJh1S4Dnhnx/hOJRzW0j7OulU2Jmth74Q6AJuMbMrnH3x6qSWGQUOjIRCcDdB4AfA28vTWsLgJm9ClhRtvnfA2uBdndvGubjxdJra4GvUByHeTWwBfgLM1s68e9Ipjs1E5FwPkaxSTxqZlea2XuAvwWeL9vufopHJt83s5vN7D+a2VVmdruZDT3q2EzxKrJ3uHsv8AHgNPDFoQ1LZCLoB0wkEHd/EriB4qXAW4A7gA9y9pVcuPsJ4N8Bfwf8PsWB94eAa4DvAJjZVcDvALe5+7Ol1x0FbgReV9q3yITRtL0iIpKbjkxERCQ3NRMREclNzURERHJTMxERkdzUTEREJDc1ExERyU3NREREclMzERGR3P4/GSo2KkoyaFoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -149,7 +149,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEaCAYAAABejCMwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACcD0lEQVR4nO19e3wU5bn/951sJLsbwGRv4aJyS7hYVES5BKuopF6oVYtAK6gIqIUqN6MEBEEs1VNPbbX9nR6tVNvanrZezjntqT2nN8R6owYUwi2Q5SYhbC7ktskGsrvP74+Z2cxuZndnZmd2N3G+n898ILMz7+WZ932f932ujIhgwoQJEyZMZBpcphtgwoQJEyZMACZDMmHChAkTWQKTIZkwYcKEiayAyZBMmDBhwkRWwGRIJkyYMGEiK2DJdAP6MpxOJ40YMSLTzTBhwoSJPoVdu3Y1EpEr9r7JkFLAiBEjUFlZmelmwOv1YvTo0ZluRtbBpIs8TLr0hkkTeRhFF8bYCbn7psiuH6CwsDDTTchKmHSRh0mX3jBpIo9008VkSP0AnZ2dmW5CVsKkizxMuvSGSRN5pJsuJkPqB+A48zPKwaSLPEy69IZJE3mkmy59/iswxoYzxn7EGPuIMdbJGCPG2AiF7+Yxxp5jjNUxxgJCGdca3GTdkZubm+kmZCVMusjDpEtvmDSRR7rp0ucZEoAxAOYBaAbwD5XvbgPwAIAnAXwVQB2A/2OMXaFnA42G3+83tPyOjg7s27cP+/btQ0dHh+J3jh49qvh5I5CMLtnQRin0ak99fT3effdd1NfXy5bd1NSUcj1K25ptNI4HtXMoXr/07G9sWZmgpdFrSy8QUZ++AHCS/y8FQABGKHjvcuHZ+yX3LACqAfxeSd2TJ08mo+D3+8nr9ZLf74/6vxza29t1q0uKlpYW+ta3VpLNNow4rpg4zkU221CqqNhE3d3dsmV1d3fT+vVbyOMZSx7PdPJ4xtL69Vtkn0/Wr1TR3t4uW4eaNsZrq55tT9SeePXI3Q8EAlRaWkYc5yCOG0sc56Dp02+kxx9/MlK21TqELr54PDmdV8r2Wyz36NGjtH37dvL5fFG/VVdXU3n5hqS000JjpUhGey3fRukcitevQCBA5eUbyOEYSW73lJT6G1uH2z2WSkvLyO0u0Z2WyZDq2hIPACpJbl2Wu9lXL5UMaSOA8wBsMfefAnAOwIBkZRjBkKSD0e2eRjbbULLbhycciAcPHky5rtjJtX79FrLZhhJQRsABYqybGKsjxuaS1TqJ1q/fIlvm+vVbyOmcT273GRoyhMjtPkNO5/yo5/VYrJItOt3d3fTjH/+7bB3l5RuooOAucrlOx21jvLYasTjE0szl8tKFF95CU6feEBkHTucYKi/fEPk2cv0qLS0jxm4hxmqJ44gYqyVgAlksN5PL9Tlx3DoCRtP8+d8moJAslplUWDgn8v769VvI7S6h3NxxBBQSMJQYK6QpU66nBx98mNzuYrLbJxJjRWSzraWiom5Z2vn9flq+fDU5HPMSjgO1SDZuUhlXieaQ3++nqqoqqqqqovLyDb3Gt8Mxl4YNG0eMFRHHTSWOG0s221pyOOb2oksyRilHO5uthhi7hazW1eRyecnl8qZMS6XQurYkg8mQej/7GwDVMvfnCWVcmqwMIxiSdHGy27cQY3MJ2EU22564A1HrYhiPeZSWlpHDMYcYG0NAFQFBAkLEWIgYO0PAGHI4RkTtnon4ycQvoHx54uV2nyGPZ1xkIiphWvGgdNFZv34LDRu2oNfCMXXqDcRxDmJsH3Gcj/Lz22jIkHCvNsajkbg42GxrdVlopTQrKuomu30LcdxYAkYSMIsslv3E2BlibB8xVkbDho0jh6M37VauXCv0i2dGPEPyE1BMwF6yWNYTMJeAOsrL6xK+6y1kscwkj2dcZKG1WA4Q0EhALQHzCVhFwCwChhBjxQSsJeAEMTaf7PYtUd+3paVFYGr8aZqxqgh95caBWiQbN6mOK7l7FRWbyW4fThxXTIy5CLiQrNbHqKioOzK+rdbVBMySbATOEGPzyWZbG0WXRGNW3CgVFl5CjPXQzuMJCnPuMAFOYmxKhOG53WPJ5/MZKmUw6hQWjyH1Bx2SVhSC1zvF4qzk915gjD3IGKtkjFXW1dWhsbERdXV1qK2tRXNzM7xeLwKBAA4cOIBwOIzdu3cDAHbt2gUA2L17N8LhMA4cOIBAIACv14vm5mbU1tbi+PHjeO+9D3Hddevh8XD46lfPYMCAMXjood+hs/NBLFz4c3R2jkA4HERHRweqqqpw7tw5fPjhh2hra8PJkydRX1+P+vp6nDx5Em1tbThy5AjOnTuHqqqqqHbs3LkT27b9CgsXroTN5sDs2YdQVGTHtdeuQ1ubH5df/hBmzJiB4mIbZs8+DqezCwsW7ANjL2HFiq/j7NkL8PzzP8YTTzyNXbt2IRwOY8+ePSgouASzZvlxySXNmDy5FpddVoexY3Pw5S/PxMmTJ1FVVYXXX38DCxeuRE6OB4sW7UJOjgdLlz6Cbdt+jd27d+PcuXM4cuSIbJ+effYHOHkyDLv9r5g37yUQ7UA4PAibNj0T6VtlZSVef/0NlJcvQlGRHddccxxjx+Zg/PjJsFhGYMyYL2P27Dw4HDbceedhdHS04f77awEURBydd+/ejfb2djQ1NcHh+J7QpyZMnnwOV1/9HEaN2osZM6pRVGTH1772GF5//c3Iu2I7xH/F7yTXp0OHDmHo0BLcfHMbgO9h/vwLEA6/g1Wr7gHwKh5+uAVEeXjwwW4MGPAjXHPNNAwevBHXXRfAmDGNmDQpjClTNuIf/9iJW2+9DU7nhViwYD84LoxHHqkE4MSqVWcRDL6BFStWguNc2Lr1IzidF2L27KcxcmQHrrxyMnbv3osxY57EDTd0Y8gQC+bPb0Ne3r/ioYcGAPgJVq16AER/wqpVRQB+jvvvX43c3P/GrFn7cdFFVkyb9mV8//sv4v33mzB16su4+OJpuPPOXFgsHfja1z4FACxZciqKxnv27EEwGMShQ4fg9/tx/PjxuPNpz549ePXV/8DixY9EjZvFix/Bq6/+Bp988gnefvt/MGtWBUaNugCTJ9fiiitCKC7ejOrqI2hoaMChQ4cQDAaxZ8+eXt9p//79vb7Tj3707/j738+guPi/MHPmn3HxxR/jzjsfQW7uh7j99tcAAIsW7URX1x+walUFGBuCBx/cA6vVgXnzHkNBwfu45ppr8b3v/QA7d7Zg8uS3MHLkH3H99b/BG28cw09/+irC4TB27dqF6667FcFgEM3NF+KRRx4Cxw3HHXccRih0CrfeWofiYoYZM2bhqqv+DePH/wHXXJODAQPsqKjYhOuvvx8bNz6NJ554Gp988onisZdsjRDpouY7KV334kKOS/XVC+pOSH8B8JHM/TKhjC8nK0PvE5LX6yWPZ3pEbAOMEnapZwgICiKz+WSzjSKv16tbXUVFIXK7uyP/clwJOZ1VxHElkhMSEbBZ2GVXEcf5yOU6HbUDVXJCktYbe3k80xP2S+kJTK4Oj8cvnDz+SYyNJcbOCCeJYKQvsbv32HJ42tQL700nl8uruO3J+uRyeYnjxgrfuIaA6QLdgwT4CAgRcISAEmLsDBUVhST9C5PN9iUCBhPwuTBWQsRYu3BC+iMBUwkIC5e0zBK64IIC4QTgE8aa9LnpBNQQMJUYqxZOTuOIMX+EBm73GXK7S4TrTITWPI15+vJjS/sJKdm42b59u+T3MOXntxHH+YTvVUzLlq1SLRJ2u0uIsSqhD0QcFxb6X0KMlZDH4yeXy0uMTSGgTvKceE0VdErFCcdsefkGYqyMGKuVfLODBLQI36lbqLeIgA3EcUTAKQIKyems0k0kmk7APCH1wlnIn4IKJL+nFR6PB8BZhEI+MJYPoBXA8wDcAADGPACeR1dXG/Lz8yPvibsQtXURnUVrqxf19Y1obGxGfX0j/P7jIDoLxmywWhcCWA/gCIA2AL8CsAWABzabFRbLEHDcC9i27dfo6OiA3W7HkiULEA6vRCjkAwCEQj6EwyuxZMndsNvtUX0UQRRGd3ctiM4Kv8vD5/MBKEROTvQz/N8Fwu89dLzvvg/EGtDe7kU4PAjARSC6A0QrQHQGQA6IGhAMroi0UUojaVt5nwwC0WkAzeA4T6SPQHPCtgPxraRuu20Wurq+hXB4MIhcIHIAaATgA28IywCEhf83AWhEOByOvN/aehSBQCNyci4D8CAAH4gAolYAuQC+LykvjFWrdgKwAjgj3B8Cfi8WBL8XE8vm+8XX3wygCIwVARgMor0QBQzh8ErMmXMrGHMgJ8cDjrPDal0AYCWIGgEwBIN1UeNALeTGDdBD+wkTJkR+b2/3o7OzG4ADRGEQMfzud59j06Zn4pYfO4d8Ph/C4QuFOZcj3GVC/wsAWBEOi205CYulGfx8DQEAiE6D6AS+/vXZYMwZd8weO3YMr776GxA9DyIPiKwAFoA3/P0cPO3rAKwBcC+AN0HUBiAPwFAwZouUJ52LekHL2pIKvsgMaT+AkUz8oj2YAN7YoSbdDYpe0I8DGAp+4AXBGL8oMZYHq3VIlDnm5MmTNdU1ZszFCAQeAVEQgAtEQQQCKzB0qBNE62GzLYbdPhnALAAThfovRH5+HgYO5BliLDN46ql1ePDBS8HYTITDpWBsJh588FI89dQ6mT6eQXt7O3y+A2hqWgK/vx3f/e7zCAaDsm1OtiiJDEGs45VXfiRZoILgJ3gHGHsKwGgQzQTRNDA2E0uWjIu0Uf57+MAYh7y8dgBLMWDAbSAaoGihDQaDeOKJpzF69GSUli7E6NGTsW7dZqxduwkezzj87Gd/Rnt7JXjGfxD88JsLYBX4xYgANIDfHIwDsBpEDULZdQgElsFqvQ9O55+RmxsEb0A6HsBlyMk5A6v1CvCL5b0ADuKHP/yS8PcSMBbG4MF/hs12D/hFrxlAi1DvKvDeEBUA7gRRAETHwO/VNiAv7zwYuwVz5w7Bhg2PRX2bgQPXwWa7FMC1AGaA426MGgdqkWyz43a7sWTJAoRCK9DRcQI802wEsBI220Lk5Py/hIt17BzyeDzguBYQ+SAyGR71Qv9PgbFvguNmY8qUCcjPL8eAAbUAmkC0H8AiTJ8+Ec899x0kGrMAEAhYATiFX3LAf+dLAdwIoFT4dzz4zeBgAIcA1IHjgpFNEdB7LuoBLWtLSpA7NvXVC+pEdlcIz94nuWcBvyL8QUl9RlrZ8eICFwF7BdFHPXGcj2y2ml5ij8rKStX1iCIJm20tcdw44rjpxHHjyGZbSy5XiWDaO06wLCuh++57kAoLR0cs0+KJy6Tlx1O2in2024cTY+OJsRKy27eQy3WKHI45tGzZqrhiHaWK6+7ubnrllVfJ7R4riKNKKDe3jBibR8BpAs4T8DEBM2jq1BsUmLGLtBgrWFQ5iONKiOOcVFpaRoFAIC6t5dpstU4ii+VmYuwgcVxQEMlcQcBXBNFcl2BQ4CHgSwSMI+AxAq6nq6+eSU5nsWB9V0w226goJbvb7aPCwu1UUPAlcjqnCCLgRrJYvkyAk1atepKAQho//ipyuaYKYtvzlJv7hCAuGku8lV0RAW4Cygk4J4gDbyaLxUFr1qynb31rZZS1IW8ME2uBlvh7qkHst/B4xvWyslu+fDVxnDsynu32LRHaJBKrys2h9eu3kNV6W+Qb8cYKvJVpefmGiAm82z2W7PaJxHFOstlGkcPBW0SK7ZL7/iJdjh49ShznEL55kyAmDQu0dlNe3nKy2+uI45oEkd44cjiOEGNlEcOaZHMxFWhZW5QA/dnKDsBdwvUTgcksE/6+Tvj9EvDyiCdj3vsN+G3KUvDbkDcBdAG4Ukm9RvshieafLtdpcru7e+lsUoFUJi/Kwj0ef9TEjWUqqVgxyfXP7S4mh2MneTz+iIUZY8XEccXkdpck8W+RX5RiUVVVRQ7HpEgd/KJbIuhG3JSX961e5rnx2uv1eiPWaKL5bTITXDm9l8fjFywY9wp6B1Ffc4qAIQQ4BZ1PicAQLiHGriLGimjYsHGCrmYKORwjacWKx8ntlterSfU6UmZ14YVvk8s1hnw+X6RtvM6liRhrJWAnARcTUEg5Od+O2rBYreWRDYuc+XNpaZnib6MUanzAYsdVKot1rJUdx7mj/PB6m+ufpoKCu6i8fEOvcsQxG+vK4XSOIYvFI2yUagSd0T7iLRuHkcNxXNAR1ghMaBR5POME5j9XV7P6ZNDT966/MySKc70r/D5C+HtzzHtW8EqaMwIj2glgptJ6jWRIRMoX371796ouW6mBgJb2KEGskppnRvMjp0Gn81Qvgwm1jql79+6NMasOEcf5IouuqJhWsliJvihSBbXIyHlmLv++nDK+RxHuI44LSxhSWGCUl1Fh4d/Jat1LHOckl2syORyjaOrUG2QXodLSsrgbBblNxLe//WyUqbTDMS+ivBdNlq3WVYJPjY/c7raoDYvbPU1Q1suPHb1MkbX6FandOPn9fvrHP/6R0NG2qqqKdu7cSVVVVRFndbXzp7ePUZhstiME3EDADGEDMpUYKyardRVZrUPI7R4bmWviqczv9+s6FxNh7969hjg592uGlKnLaIYkItni29XVpalcrScePXZK0gmdzCpLSWQAOYh0EfvpdJ4ijquPLLqiH00icY50MjqdU4RoFZvIbt8sREOYLviFjKLq6uqE/Yx/QiJiLCSIEnkLLqezhgoK7qLly1fT9u3b6ejRo3EXQLd7bJSIVbo4yS1cTz65NamYy+1uEb7JPnK7u6Pq48WFU5JaSqY6TrSOT6WLtfTbjh59Q9yxJbcgL1u2SrW1aOxYEE+lvLiuiIA9xNguslr3RvppRFQKNejq6tJVMiLCZEh9mCElw+HDhzW9l65dVjyIA93h2CkshkHiuCbBmVI8OU2kgoLZmiaDSJcevVyPPkmqW0i0q5VOxqKiEDFWJeh6bouYjvOy/bJeohq5MmJ1SMAB4jg+CgZwFwHjKDf3ImLMKfxbKOglRkd0RUpFrFJIf4sdL/HEXDbbWmKsrFdEC3GDEO90oMQRNBm0nEAS9TnZd7n33sNxx5b0OY/HTw7HTiosvJ3s9uGq2hfrasGbpYsi24nE2CjhVOqM0kFlEvv27Uv5O8jBZEj9mCG1tram9L7Ru6x4kBpwyHn2u1ynBZGVV9NkiKWL3++nZctWkcMxRxGDk1sU7fY6AkYT74sVijBROWOT2H5KDSOmT7+RbLYhBLiE8hxksw2lyZOvpYEDr6O8vI8liuz5ZLU+RsCNZLHMjDmZ8R77ar6d3HiRV7zH1wkl2jXH+628fIPicZaKv5oSxH7byZNbZcdWj5/YqUgUDY6bTowVk8XiUBUeSVqn1KeN39iMI7fbJ/h1TUm5f3ph//79hnyHeAzpi2z23W/Q0tKS0vt2ux2jRo3S5B+SCiwWC7Zu3YijR3fjW99aiMLCp2GzdQJgCIV8CAZXIC9vECyWUVHvKTVvjaWL3W7Hiy8+h4ceujyuWboUcn5PNlsHABd4M/kmAE2w2XIxePCouG0S++n1VuLDD1/HvffOxZEjTuTnfwqP5xgKC1/HhRd+GRMmlODTT/fD7+9CV9c9CId/BN4H7QWcO/cHWCzjEQxaQPQ3AB+C6O8IBPZizJiLVX07ufEiZ67/0EMTsWPHO5F2e72V2Lp1IywWS1zz/scfX4Ft234FjnshQrecHDc6O7fi+ef/HdOnfxOjR0/GE088Hde8H1Bu4q8Vsd/24otbhLZGjy3xuc7On6Gzcz+IdgD4EMA/EAxeiUsuqVM0loBo03XebJ/A+7SthNV6N3Jy3GDMDsbaNPdP74jgfPoJ475DL8hxKfPqWyek2JhyRsKo05Sc+JA3qS3RLC5IRBelgS7l9T/FxFgVuVznIxETlLYpniiKt6IqIuCfkogA8wnYIuyip0RiCyZzA0iGVOmS6Hm5k42oK+G4qZHIDkrErkboLqTtluowr7vuM1kDF1GcyX9zMboHCQYgVaQ2npx0nCsJVKsURkVX9/l8pg6pr1xfJIZkZDoBKfQ0NdeDLvH0P1brbZraJLdg91j/TSXGdgp+SUEC6gT/Iy8xNkoIrOkjjydIYqgnLaITI8dLLMPt6Vstcdw4iaUeb4whWq3JwWgdZ0XFJrJaJxFjxTRp0jcF67ZJVFGxKeq5ZctWEWPjieO6JVeTEPxUe8ionlQeqffPKObt8/kM+Q4mQ+rHDOnEiROG16HFlFZf01/1k0EPusjVX1GxiSoqNmtqk+iQ7HSekpyuuoXo4+MkTpDdxMeam0rAbLJaVwu76ZqUlctGjxfpWHG5zguRyqVWjWKsuWLBRyzx5saoU3lFxWbB8bWKbrhhHzFWRVbrbVRRsTnqucbGRsrNdROwV/ATqqPc3EZyuep0MbBItX89eq7TURsVPRxlpWPF9EPK8itbGFKqRg3JoMbiSUuyOaVtUPuunnSRq19tm0Ta2GxDibGbIkYcLtdpied9T2BQPrBtIVmtI0jMwySXekLtLtjo8RLrUAoUEHAP2WyfR/rH2MEoPzC5fhhpbBPrnzZpUlPcALB8xIZJxNhcYqxOENcdJKv1NhUm6NF5rfSULFRXVwuRInwRUa5oHJSqAYhRYyUeQzKNGvoB9IxdFb/85EFNAWDTpmfw8su88pfjPgTRDrz00n5cd92tUbHckim1Y6HF8EJPusjVr7ZNIm3s9n/CZpsBYA46Oqais3MKpk8HrNajCIXqMXDgQDgcIRQUPIWVKx/Avn1/w9Gju/DOO29g3rwhAK5VpESPB5/PZ2g6bIvFAo7jMGDA1bjgghsB2ABUorNzJhobN8Lv9wJ4EjbbQnCcvVdgULnYf2rHSzJIxzRjHCZObAJjXK8x3dHRgW3bfoX8/D/AZpsIxq4H8GUAt4OxXXj88RUJ69m06Rm89NJ+tLf/EY2N/42mpv/C97+/E9dccxMOHz6sC/1/+tNforOzAWJMSsCBzs5utLYeRaqGB0avLb0gx6XMq2+dkLQ6xiqF0hNSMoW9aL6drlD5RtNFDeIZSDgcO8ntLpH47iRybhWz1pbQ8uWrqaWlRXU7uru76ckntxqqCxT7yvsxzRdSarQJJ74yAgqi/MBizYiNNGaIbaNYR3Fxl+yYjtX5SX3AlKZLsVr3EmO7iLFWwWDlFAEeslpHpEz/3rRW5hunFEbNIZgnpP6Lw4cPG1q+krQSgPxJiiiMrq6BYOySyD2jQuXHwki6qD1hyNGG4+y44IIpYMyBpqamKNNwqYl17KkTeA+/+91pfO97L6pu96ZNz6CpKSfqBPvyy/sTpmZQC5/PB6LB6Or6LwAvgLEiMDYQHDcBwA/AGAebbQEYs0TeEc2I8/PzZczG9R8vsWP65psPy47p3ilI7LBYRoHIj2Snj9raWrS3dyMQmAOih0E0BeHw0+BPMSPQ1cUhHH4nJfqL42rQoO/AZuPN8IFSMHYjrFYvHnjgHk3lijB6bYmFyZD6ASZOnGh4HcnSSgDyviPhcBi8z0Wr4aHyY2EEXbSKk9SkzpCKAUWRkR4LtFjWG28sMnSx93g8CIUaAIj5hEQQOM4Fq3UogsEVspsbv98PpeLhVCEd07/73UOyY1rpZkwOP/3pLxEIjAbwd/C+S+8COABgI/j0H3zKiVToL46rcLgJgwZthMtVCYfjdTgcf8TAgRdg2LBhqsuUIh1rixQmQ+oHSEcSrVjnTukOXoTc5OWZ0Wrk5d0OjuuZvIY51klgBF3kdGSxO1y501MsbcSkhKFQ78SAUqjR3yWDWBafSjy1shLBbrfj/vsXgOgEeMdPgM8p1IoBA3ywWjtwzz3Rm5tFi4px333zhcST6XHElI7p3/72GdkxDSjbjMWio6MDv/zlG7Ba/w18DOcQAD7BJvALALeAsTZwnCcl+seOK46zgzE7iNZrToYoRboT9GVcD9OXr2zRIWUT5MykY0Plu1xeKiiYnbJ8O91IpktLFsMtWToDLXWqsUDTs6xk6O7uptLSMiE19z5irJYsFt503W6fSB4PHxB2//79vYLnZiK1ghKosfrr0T2FKTe3UfApqxfMxr9EwC0RM/hU6Z/pmJRaANPsu/8ypFSTaBlhXistUxrc1GYbRRznJLt9IrndxjjXitA7uViy+GrLl69Oqozn0z3MiQQyVbLY6hmVff36LVRR8UPDFvvY787nTeKTCPKm7TU0ZEg4Uu/UqTdQQcFdUQFcHY75huRVSgS9x0o08w+T3d5KjJ2RmPKvTjk6g1ydes9jM0FfH7qyhSFpRbqiL4goL9/Qa/HJhp2vUsQ7Ybhcp8nhGE0uV3HC04fP5yOHY6TqYLFqd8CJvqtRu+lEdfp8PnI6x8RkGxZzARUK4ZJ6fGf0zquUKcRuJMQEflOn3tCnTjNGwGRI/ZghffbZZ5reS4d5rYh0iotEaKVLIkTTrCeTZ17eRcRxxVHRyqWnp2XLVpHTOUaIFj22l9mzxzOdqqqqdMl9k+y7fvbZZ7rvphPVGS++HWONQv4nb6/UI3pE9FYDI8ZKIuafqQj7amEEXYjiMyTG/2ZCC6666iqqrKzMdDMQDAZ7KWKToaOjA6NHTwbRjiiFeSjkA2Mz4fVWqlaIdnR0wOfzwePx9Hr36NGjKC1dKJgtRyMcLsWHH76OUaNG9fotFcTSJVH71JS5adMz2Lbt1/D7c9HZ2QCr9T7k569DQ8PVAH4Pu30YBg4cCICnZ0fHVcjLmwqO+5Fgch0EsAY226UYNGgjQqEz6Oi4Gna7FYw5AZzFkiUL8NRT6wz5rgMGDFBdbip17t27A5dddm3kd6Iw6usbQdQNoisA7ATHjQKv+G+CwxECx92gaQxqhZY5pBR6jLtMwSi6MMZ2EdFVsfdNK7t+gJqaGtXv6Gm9pcQU2uh0AnIQ6aKn579ombV37w7k5fnhdH6AwYOfBWMW5OV9FcBGdHScAFEYoZAPodAKEIWRk/P/YLEMgc1mBWN5AJ5HIPBrBINH0d7+IMJhF4B/pOwbpOS7ahkvifyuktXp9/ujLMF6XAEeRW7uJDC2HkQ+ADkgakAwmNjy0AhooYlSyEX0MDJShp4wki5yMBlSP8Dw4cNVv6Mng1BiCp2KP4dWiHRR0j618Pv9sFiKkJNzMdrankZDw2R0dX0Eog9BNBPB4DQwNhPz5w9Dfv7FkcV64MB82Gy5glNoGOHwLDC2C/n5f9DFN0jJd1UzXvTabEhNp4Evg7GZsFpHoLDw9xKHTp5mS5aMUx0OKVVomUNaoHZzlGnGlS66RCAnxzOvvqVDOnbsmKb3tFh8xUJb4NX0KHSPHTtmmO4qUcgW4AZauvTb5Pf7ExpCOJ3FtHPnzoSWe2r0KKJegrdsi69DUjNelOoZlT4Xr42ZdgXQOofUQimd0m1wFA9G0QWmUUP/ZUgNDQ2q3+ntE+NK6hMjBy2pptOl0G1oaEjavmSGBIlQXr6BGCsScv1Q3HTmiRYhPRhm71h3vC+P2z1WlvErHS9GbjZ6p3UvoWXLVmmKz6cHtMwhtVBDz3QaHCWCUXSJx5BMkV0/QHd3t+p3Nm16Bq+8chB2eyXc7kMoLPwUVus14LgcnDt3TrGYQK3oL50K3u7u7rjtCwZr0d5+AjfeOAfTpy/AiBFX4LHHNqrSKz3wwD2w2VyC+K0B8dKZx3r6A9di7twhePzxFbqIMnvHutuBw4cLce+9c/Hhh69j794dWLJkAc6dOxehixKo0TMqieQhhfh8dfXHmDNnGgDg7bd3YuzYqXjssY26RcIWkUz0pWUOqUUsPXk9YxAc54JchPFUw0XpIe5LB12iIMelzKtvnZBOnTql6vn4O7U6stuHk9tdrEpMoGQ3lwkRhEiXRFlfbbYaIaPpPmKsjEpLyxS3SW1itJaWFlq+fDW53SVRNAgEAppFmcl23bFRENav36I4QV86TPXjmdHbbKN0GSNKx53aOaQFPfSsi+S84rh6YqyK7PbhkdOhFqmDFHrONaPoAlNk138Z0tmzZ1U9H2/A874h48nh2KlKTKBEXJMJEYRIFznxkN0+XGBGTYKoTQzZX6RKj6GmX8me1SLKTLR42e0TqaBgdq/6tm59zpD+qUUsw+PHX1Mk3bnL5U25LqXtVzuHUmkPn6X2oJDo7wwxNpes1klR4yCVjYCe38woupgMqR8zpJqaGlXPyw34oqIQMVYVyeKpZTccb0HNhFMsUW+6iO2rqqoit3uasEMNCvof8ZpKDsco1Vlgk+lCjDaukDOa4DinbFSIb3xjseb+6WmIImWm/Pg7Q8B5AoIETCWbbQ+53crThMdCDc3VziGtaGlpETIGlxDHTRfS1m8hl+uUYr1jIug9zoyiSzyGZOqQ+gGGDh2q6nk5vUUwWAegPJLFU4Qav6R4GVSV6iL0NnGNpYvYvpEjRyIcbgTvC5MT+Z33hWlFTo5TsR9WIl2I1JxXqf5ALeLpoILBFcjLGwSLJdrZOCfHg88+O6W6f3K6oVS/l1S/19bWDiIGwAKgEUArAoECdHbaoZU+anRgaueQVjQ1NWHgwEvgdu+Gw/E6XK5KDBq0ERbLMCTSOyrNDqynfyGQPrqIMBlSP8CxY8dUvxM74DnuRlitVbDZFkc9p4fjajLDB4fDYUjK6nh0sdvtWLToGwBWQ0yPwDOjlcjLux2Mtanu7/e+9yJ+97vTAN6T9XXqocEZtLe3o76+EY2NzfD5DsDv/xwOh0NzP+UWryVLxiE/3yJL8+uuG6+6f9LNhl6OxiIzDYVWIBD4HAABqAOwEsDdYGyo4GR8VtP4U2Nwo2UOaYHYJiI/LJZRkc1fbJvUGonElq+XA3q66BKB3LHJvPqWyC4UCml+VypmS0X2nEz/kahsvfUUYlva2triPtOTHqGIOG4qcdw4stnWksMxV3W9SsUkSvQHqSD2Gxil/9Gz3O7ublq+fDVxnJuAiQQUEbCWGOsW6HMTLV++2vC2pjKHYpHKXNADepavJ12kgKlD6r8MadeuXbqUo0VfoNSiJ17ZLS0tusm8Y9vy+OMbkvrClJdvIIdjFLndUzTrR5RaRSnVH+iFeDRPJaWAEbown89HhYWXUEHBX8lm20AcN444bjoxVkI229CUfJOUjmk95lCqc0GrXi6WAepZvl5rSyxMhtSPGZLeUGPtpXY3Flt2qiauqbRFS3/jva9kkRb76vH4yeXyRhmPGBndWk9HZD2/l3QBt9snEmNFZLOtJbe7hRyOneRwzNHt1JAOZ+xU54JaJGOA2RxR3GRI/ZghGZVEKxn02C3rteOWK2fdukrDLflEiIuRy+WNXNJoDF6vl3w+ny70SnWRyZYTUmIfpPTmCdIjyWW6LUnT4UqR7gR9plFDP8DkyZMzUq8eFj16BV2Va8trr03WbF2kFhs3PoaSkrNoapqKpqZb0dQ0FcXFTQgGuyPK/8suuxajR1+MUOgR1X3VM2J5KuMl3vcKhb6Nr3/9ZsXl9I5GwDB48Gg4nT+HzZaDvXt3KFLi64VU55De1m3JoFc0h2RI99piMqR+gN27d2ekXr0sepSauCYyM5Zry7337jY0vYUUTz/9HA4fLoTDsRdO5z44HHvx2WdW/OhH/wNplPHq6kKMHdui2pxXz4jlqY4X6fcKhabD778SXV078fbbOxUzyngLuMUyBDk5Tvj9/pTaqBap0iTd6VXSxQDTvrbIHZvMq2+J7IyyhImFnLhIT7FBPHGUUmVxbFuKiurSEpBSi6OxmvTceouD9Bovfr+fli9fTQ7HvIw7cKYKPWiSzmgk6aJfuq3szBNSP8ChQ4cMLT8YDOKxxzZixIgrMH36gqhdsFYHPjnEc6xVejqIbcvttz+ruS1qILdbDYfDYMwDxhwIh3t2q9KkdXJ9VVq+tCy1u2E9x8tbb72DnJwXVYuNMpEfKxH0oImecyEZ0kU/o9eWXpDjUubVt05InZ2dhpXd469TRoztI47zkc1WQw5H9M7PKIseLTtBsS2NjY26tkVNG/UIxZSo/FR2w3qNF/2CgKYnP1Yi6DmH0mXdlg76GbW2wDwh9V+cPn3asLLXrXsKH31UBeA1MHYpAAe6ugoQCGyN2gXHO92kikSnA6JB+OSTT3rtxMW2tLS06NqWeJDbrYbDDcjLW4+8PDuIeH2I1h2s3rthvcZLqnqTeNEI1KQ/0Qt6ziGj5kIstEZzUAMj1xY59AuGxBi7iDH2JmOslTHWxhh7mzF2scJ3Kc51hcHN1g2FhYWGlNvR0YFXX/0VGLsEjIkxrXIADEZX10AQXWi49ZrcokcURGtrBRobj2L+/HVxFelG0UUOcuKalSsnY+XKr+kiwtFDHCQahVitVtX1y0EvRiku4AMGDNA1hJSaWHuJxkqm04gng5EMMJ1zCEDfF9kBsAE4AmAfgDsA3A6gCoAXgF3B+wTgVQDTYi5bsnezRWRnVM4Sr9dLbvcU4rixkRTd4sXYPnI6i9OifI5VFvNpw28hm60mofI4HTluYiEnrtFThKOlrFijkNmz5+om2tFTbKSXUYCWfEByY0VNOdnshJoKzHxI6hnSSgAhAGMk90YCCAJYo+B9AvAdLXVnC0M6ffq06neUTCBRd8EzgPkRpsTnDSpTlTdISb3JrezGkcs1mRhzkM12hIYMCSfUp2ihSyZg9GIWu9CXlR3Q3forXdEulEALY5MbK9maeDKdMGoO9WeG9DcAH8jc3wFgh4L3+zxDUpP3Xu0EWr9+Czkcc8lmWyvEGJtKjBWpyqyarF6538rLN1B1dXVUfK7y8g1UUHAJcVwJcZyP8vPbophSrCJdDV0ygXQsZnIL/Ze/3JAx8+p4qKqqIqdzSiTrrtaQRFoZW+xYURMwN5VTXbafrIyaQ/EYUn/QIV0KXlwXi/0AJigsYxlj7BxjrJMx9nfG2Jf1a57xUONEqNbB8qmn1uGhhyZi4MD/htM5CAUFDXj00aXYseMdVcrTRPVKf2PsPbS334Hvf/8VXHnlXRE9wsaNW/Haa0dgsfwdAANREJ2d3Whv7zEYiFWkp9u5Ui30dHaNBzmjkKIif9oiWCSDGIHixhu/jrNnj8HnO4D29nbw+0T1jqVaTeRjx4qSclKJlqBn5A0jke451B8YUiGAZpn7ZwEUKHj/dQDLAcwC8CAAB4C/M8Zmyj3MGHuQMVbJGKusq6tDY2Mj6urqUFtbi+bmZni9XgQCARw4cADhcDji6bxr1y4AvOdzOBzGgQMHEAgE4PV60dzcjNraWojlHT9+HH6/H4cOHUIwGMSePXuiyhD/raqqwrlz59DR0YG2tjacPHkS9fX1qK+vx8mTJ9HW1oYjR47g3LlzqKqqQkdHB4iC4LgXsGTJKQDAwoVnYLU+D5/Ph4aGBhw/fjyqT+3t7Vi8+G7s3/8+/vM/f4Bjxz7DN795JywWi+I+nTp1CocPH0FR0bP42teaMWBAEAsXngHHvYBwOIhXXnkdS5c+gpwcD26//TXk5tbhjjv+By7Xf2Pq1N/h/ffr8e6772PGjA24+GIn5s5dhUGD1mHRosPo7AzgvvveRzi8Elu3roXdbseePXsQDAbR1tYGv9/fq0+Z+k5HjhyJfKeTJ0/iww//iRkzNuCii6woKzuCwYMvxDe+sRrbtv0aO3fujCpD7NOhQ4dU9cnj8eD++8sQCvlw7727wXFhXHRRCwYNOonrrx+PvLw83fqUaOzJlbFnzx489dS/oK6Owe3+M269dRMmTPh3TJhQjQkTvLjoIi+uv/7/Ydmy+3DixAlF3+ncuXMYMcKGSZP247LL6jBmTCOuueY4HI7j+OpXr4TD4ZDtk9PpjOqT3W7HtGkjMHZsNcaPr8e0aScxdGgbZs36FPn559HS0gKfz4fFi+9FTo4HixbxZX3zm3tgsznw1a9+FSdPnoz7nbZu/Vc0NlrA2LtYtOjHINqBUGggNm16xvCxp+Y7OZ1OzWMv0XeKC7ljU1+6AJwH8IzM/a0AghrKGwjgBID3kz2bLSK7gwcPKnpOz0jNapCoXodjEjmdU4Q2+GMMKOrJ7e4mh2MncVxxRJxTVNRNdvsWQYRYQk5nsayoSyldMoF0fotYsdLixZVpiWCRDLFiMfG78uk5isnt1ibC1CJGkxsrycrRKh7MtigViWDUHEI/Ftk1gz8lxaIA8ienhCCidgB/BHB1iu1KG8aMGaPouXTH21JSb05OBziuRTAX5sUkjHnA26kQOI6DxXIpgBYhzTrAmAWDBm2Ew/FHFBQEsX//+7L+F0rpkgmk81vEmoz/9a+L0xLBIhlixWLid3W7d6OgIB9/+9ubmvxqtJjIy42VZOVoNXtPdyDWVJDuOdQfGNJ+8HqkWEwAcEBjmQyiELsPYP/+/Yqey1S4lkT1Ll26EEuXLkQ4vFJ4+iz4tOKtsNmsYIwDkR95ebkgWhP1PtF6PPTQIrjdbtl6ldIlE0jnt4h1oHzrrW1pjaQdD/GYMp/eO4CRI0dqKleLw6jcWFFSjhbml6mNoRakfQ7JHZv60gVgFXgT71GSeyMAdAN4VEN5gwCchAILvWwR2alBpsK1JKpX+pvNNkrIiVNDQ4aEI2KSiopNWRNmRi9kU+icTIG34pxDDsdO8nj8hgYkNRJqreVixYEu12kqKLiLVq5cm9VWd3oB/djs2w6gBrwz7O0AvgZgD4CjAPIlz10iMK4nJffKAfwUwN0AZgK4TyjnPIAvJ6s7WxiSliRamTI3TeaHVF1dTeXlG+Iu0mrabVRyMb1pl+5vkamEjrHo7u6miorNZLcPJ44rJo5zkc02lCoqNqWdKaebJtLNCJ8t10m5uRcRY4Vks40it7skKzYn6U7Ql3GGoscF4GIAbwFoA9AO4L8AjIh5ZgR4Mdxmyb3bAHwAoFE4UTUB+D2AKUrqzRaG1B+Rjf4Z2eIEmY200QLpKaGoKERO5ylyOOb1udNRKuB962aT1bqXOK5JcDqfTzbb2j55UlSKfs2QMnVlC0NSu4vpLwtaMui9u0tnvhs56MUQjTwNKB1bqVqa6T2GM3FqFGngcp0mjvMRxwWFSChniOPGkcvlzbjVnZnC3IRqKE0z3Fec8fSCnumXRSdIxr4Log6Ewx2GpIxOBL0caY1IS612bEktzYjCCIWCIAontTQzagynO1U30EMDxlzg7ahyAECwMhVdKDNrdWemMDehGqJDG5A4MnE6IgNkE6R0kUJL9GbeSbgbTU23oqlpIRoaJqOt7WlwnAPpWDRSiQoQi3h0SQVqx5bH4wHRWbS2elFf34jGxmbU1zeitdWLRJZmRo1hI2iSDKK1HVEDeG1CCABAxFvb8cis1V266WIypH6AkpKSpDtHPRe0voKSkpKov1PZXf/0p79EIDAaRH8HwC+EnZ370da2AelYNPT0XYmlS6rQMrbsdjvGjLkYgcAjIAoCcIEoiEDgEYwefZGs2buRY1hvmiiBaPpPtBp5ee0AWsG7PKxEXt7tIFqfkey5UqSbLiZD6gc4efJk0p1jX3LG0wsnT56M+lvr7rqjowO//OUbsFp/AsbyAIQEscrzCAR+jnvuuSulRUPJiU1P35VYuqQKLWOro6MDNTUnYLVeBsZuBFAKxm6E1XoZampOytLCyDGsN02UQvRjGjjwq7BaZ4Kxy2G1foL8/P/KCufldNPFZEj9AIMGDUq6c4xd0MLhDgSDRxEMHkWmxQJGQdqnVHbX4kI4ePAo2Gy54I0xG8CYBTabCw88cI+m9qk5senpSKv3t9bCLH0+HxhzYPDgZ+FyVcLheB0uVyUGD34WjBXKMhcjHUr1polSsbDU+Xbv3v9CXd1+VFX9BUeP7soi5+X0wWRI/QCnTp1Csp2juKCFQo+gtbUCDQ2T0dR0NxobZ2D06IswYMCAjLTdSEhTmKeyu+5ZCOsxcOBAuN1OOJ0FcDhCyM/vxrBhw2TfS7YoaYm8nmrWWAC6p3bXwiylzIXj7LBYRoHj7AmZi5HRLfSiiVaxsN1uh8fjgd/vh8fjSdqXdGWx1XusJIWc6Z159S2z7xMnTigyoe3u7qbS0jJirIwY20cc5yObrYYcjv7p7+Dz+SL/T9XMWI3JtxLz7FTak6rJs5QuekFL1AktZvRGRbfQiyap9Wksud1TyOEYSeXlG2T7lG5fOCPGClF8s++ML+p9+coWhuTz+RRNBKnfg9vdHYmenY5FMBOInUyp+BGpWQjjhYWRZtjNVOR1IuMWGSJ14yQV5qL3eNSDJlo3GdFJMMcmTIKZbl84kyH1oStbGNKJEycUTW4ti2C2RCfQghMnTkT9rcfuOtlCGL0ohSk/v404ziecSJ2Rna+RKQiStTGWLplGNmx29KCJmvkl9tnn85HHM5ZstrXE2PxI6hU+YkNZ1CYmE2krjBorJkPqxwzpzJkzkcFdVVVFVVVVcWPFqR3QmY5OkApaW1tl7xu5AEoXJZ4ZNUU88DluKhUUzI7QTm/aKt08xKPLFxl60ETJ/Ir9Rk7nGLLZRhJjJZI8YCQwpX3kdBZHxmkmTtVGjZV4DMk0aujDEBWojz32JC677A4MGTIBU6fejhtvnIPvfvf5XopUtUrhvu67FM9QwW63Y9SoUYb4d4jK+mCwDp2dAQCDAeSAd3ZshcXyYoR2ehkpiFBqJNEfTfxThR40UTK/Yr8RY+8hEBgDom7BlUBECIy5wHGOSNsykbYi7WNFjkuZV984IYk7bI/nkOLAjGrEVpnUc+iBrq6ujNS7fv0WKii4SxDT8bHJGJtPdvuWhOKbVMV0Sk+/maJLNkMPmiSLVh/vG9lsRwgoJOCIcDoKEsc1kc1W0+vbpVtiYdRYgSmyyx6GpOcC5HKdpiVLdqoOzKikDX0p1bIc9u7dm5F6u7u7qbx8A3GckzhuKnHcOLLbt1BRUbdhtFOzecgUXbIZqdBETlRaXr6Bqquro75z/G8UptzcsQTMICCx9Wu6c2gZNVZMhpQFDElPAwFxcLvd3cRx9VGyZ46bLjCk1E8xfVmHlGmIqQVcLq/htEvn5iHVDZWW97PB8CEelM6R+N+ojuz24WS1eogxF3FcMdntw6miYnPctSGb6aEE8RiSqUNKI/QMDCkNzLhy5WEYFZhRbz2HVmhxBNy1a5eBLUqOZ57ZhGXLpoLjZhtOOzX6Qa10STXStpb30xWhXitN1OhZ432j9vYHEQ67MHDgHrjdx1BQ8Dry8qaC47i4kRqM1INKsXPnzrQ44EYgx6XMS/8TkhE7WHFnZrPVpJTcS6n4LhM7sr5sdi4iXbQzWpyT6mlZqa+clFbZcEJP9P3U6lnFb+R2jyWncwq5XCVksw0ll+sUFRWFIv6BmRaLGz3vYIrsMsuQjDAQEAfNunWbyG6fSBznFNIfKxs8fWGxT2VBypZU3cmQ7pToWlPep5pQL9H7LS0tsnoYt7skLWJIOZoYEXGjhyEVk8MxiQoLLyG7fWLEX40Xv/soP78to4ZD4ryrqHjfkI2AyZAyzJDS4Qjp8/lULWyZ2H2qWXz7ulFFMvSFDYH4vaqqqlLaUCXbkC1btqrXWCwouItstlEZs/JUOj/U6Ap7R/HwEuARjBmCESs7xg6S3T48I2M8HfMuHkMydUhpgpGBIWtqajBq1Ci43W7FcuV0+xhp0QWkmm5gz549OrTcOGQqYaISusR+rxtvnIP29hMIBmujnlPqA5PIh4boLN5664+9xqLF8iK6utqEiPTq61SDWJoomR8ijX7xizdw/vxJNDVNRWvraADXyeoK5cscAWAugNUgqgcAEDUCeBJEYd36pwbSeffNb/bQJR2pakyGlEYYZSBw6aWXqn4n3fmRtCy+qToCaqFLPOgdXTmTTsdK6BL7vYD3QDQZfv9tmjZUiTZkd911Kxhz9hqLFssQWK1DEAyuiLwTDB5Fd/eSlHNQxSKWJkrmh0gjYAcGDdoLh2MvBgy4EvfeO1c2dYRcmeFwGIytB+AFcB34vFAzYbNNRH7+xRlxYpbOu7ff7qGLkQ64IkyGlEZIc598+OHr8Hordcl5UlNTI3s/0SKaTq9vrYtvqqfKeHRRA6OsvDKZMDEZXeJ9r4EDXwbHNQC4VtOGKt6G7Lvf3YR4YzE/vxtLlkwCcB1aW0ejqWkqzp8/iV/84g1dre1iaZJsfuTn5/eikcUyBLm5P8Yvf/mm4jnHcRyAJjBmgcv1fiQvlN3+IIBmdHZ26r45qa+vx7vvvov6+nrZ36Xz7oYb9kT6rYc0Jynk5Hjmpb8OyUi0t7dH/a1UN2GUDilWT5SKQUcqlmOxdNECI2mUKf1YMrok+15VVVW6+yElozOvp7mLXK7Thug75WiSqE1ax7RcmVbrbWS1TpLcqyOr9Tay2YbqqlsMBAJUWlpGHOcQooo7qLS0jAKBQK9nxXk3ceIMQyw2YRo19F+GdOzYsai/lS6iepsJx2OELS0tKS++WizRYumiFkYzDb2ZnVIaJaNLJphlorGYjvbI0cSINsmVWVGxmSoqNkXu8U6yk8jlOqUr85069QZi7GZi7JQkovgtVFpaFvedQ4cOGeKyYDKkfsyQGhoaIv/XMlF8Ph9t37495dwniRbYTFj0SemiBUbH8tNrQ6DWWk8JXeSswQoKZkelQzACckw1HTEVE9EkHqNPZUzLlen3+6mqqorc7mJdmW93dzetWPG4EC9vHwE+YqyNOC5MjNUSxznjzv1U51A8xGNImU3YbkIXdHd3R/6fSDcRDvO6iVGjRgHg9SObNj2Dbdt+BaAQwFksWbIATz21TrVeq0fvsCNK7wC8gG3bZqK6+mMAL2LbtpkIhwvAWDMefPBuQyM+SOmiBVKZv5SeoZAPjKWuZxN1iuvXr4HP51OUuloOonJdpH0o5MPLL68E8Ay2bt3Y63kldOG/yzN45ZXr0Nraja6uNlitQ/CLX9Tgggsu0DRGlECMQCCio6MDnZ2dIGo07DsAiWkS2yYRIo3UjumOjg4cO3ZMth6bzQbGnOC45PNXKTZtegavvbYXwGgAlwIIgagVgB+MDQVQiAMHDsDtdvd6N9U5pBpyXCrZBaAEwJ0AHgLwoPD/Yi1l9eUrW05Ip06divxfzQlJz1OL0l1sOiM+SOmiFdkQKSARtJyI1dDFaN1NPMSe+owSY4lIZawoHdPd3d1UUbGJbLahxHHyMev0Fk+K5TmdNQQUE1BHABEQFE5KpxKekPSYQ3JAqn5IjLHxjLEXGGOnARwE8CaAnwD4d+H/hxhjpxljP2SMjdeXbZpIBJvNFvm/Uss0vc2OlVrtxcbg0tucWgopXbQiW2L5xYMWaz2ldOno6MAvf/kGcnN/DItlSKTcdJimx5qd2+2fABiOjo4phnyHVMaK0rhymzY9gxde+D0CgRkgqgJwEJ2df8ELL+yKuD/o7a8ojo/c3NHIzZ0HYAWAMwByADQAWIpp0ybJno4AfeaQKshxKekF/pz3JvjonX4AfwLwJIAFAG4GcIvw/03Cb37h2TcAjEpWfl++suWEVFNTE/W3UenMkyHRaSJ2F5mOKAWxdFEKaVu1RsFIF7TsqJXSJVP5sBL1ye0emzAjstZvpHWsKIXf7ye3u5gYK47JDBskxqrI7R4rMzdSNzaS0rKo6Dzl5j5BQAkBVxNQSFOn3iBrZSfCKLogBR3SAQBVABYBeJuIEm6LGGN2AHeBZ8UHAOSp4pAmVGPo0KFRf8vpJgDg5MmTET2FEfoROZn60qXzEQ6HMXr0ZEj1VOFwGK+8clCx3kMLYumSDLE6Nb//cxCFkZ9/MRhrjujXsgnijpqn3QsRWobDK/Hgg/I7aqV0MVqHFg+J9aCFsNlsUf3SQxeqdqyohc/nQyiUD8byAEj7lQPGPAiHB0f0QxaLBevXr8E3v3knAGDkyJGafX/E8fHSSyvh938HodAjAG4HsBpXXTUR77//fwlpZDRdekGOS0kvALcne8aId/vClS0npP3798f9LdFJJB1+SHJ1OBxzyG4fbrhZcSK6yEHa1vz8NmLsIDE2l+z2LVmnO5JC7Y5aDV0yFe9QzalPjzaqHStqofSEZITkIBAI0LBh44SYeVcTUEIWy2oqLJyblEZG0QWm2Xf/ZUihUCjub4kmq9HpCuItLA7HTuK4YioqChkqCkpEl0RtLSoKCZGXg5EMvB6PP+uDuioVWamhS7ozlIpIPemdum+lhiZasX79FrJaJxFjc4VxxQdRtVpvi/TLiA1AefkGYqyIgCPEmJcYa42bIj0WRtElLQwJwJUAfgZgtZ7lZuuVLQxp165dsveVTlYjLN/8fj9t376d3O4pMkzHTxznIqfzlKEnpHh0kYNUX9I7C+/0SCTnTKYEiAe1308NXbTWkWp5coxQXVpwdd9KC03UItrKzk2MjSartYjWrFlvmAOw3+8nh2MkcdzUmKzSQeI4H7nd0xLSyCi6xGNIqmPZMcbujXPdB+BR8LqmJ3SRJ5pQhCuvvFL2vlILLD2zT7a2tuLb316DUaOuxPz569DY6EVrawWIemKOEfmRl5cLojW6Rz6XIh5d5CDVl/DxxQi8vwZvJchxnrQEl1SKjo4OHD58GI89tlF1nD01dBGR6hgRrSlbW1sVxQaUxn18773XcM89d+GXv3wD1167KOodvWIyaqGJWlgsFjzzzGacPn0AS5bMQ2EhMHDgCPzqV29h06ZnUFtbC73jG/p8PuTkuAC0CGM5UiqIGhAONyWkUTroIoWW4KqvAXhV5voZgG+kUK4JjYiXfjmdAVTFIKRDh07AT35yAA0Nb6Gz88/Iy9uJQGAv2to2ROoOh1dixYoH8NBDXzLUnFptWuo5c25FKLQC4XADbDYriI4AeARW690g8ssyTCPN1uUgDfY6adIt+P73d6K9/Y/guA+gNH1FOlO7xwanHTbsS/jBD/4TodBfQPQewuHteOmlfVi58nFZGtrtdvz857/Fa68dgVykeL3MpJXSRI/v/b3vvYj//M8G5OR8gJycjyL9+elPfwm956vH4wFjrcjLuwPAyghTIjoNYDUWLZqfkEbpHCsA1IvsAISTXEEAa9WW2xevbBHZJUK6lNLr128hh2OORGkbJI5rovz8NiHFupPc7im9dBCZSo0uQqpEdrmmktVaRDbbcPJ4ppHdPpxstqHkdk/r1e5MJdcTv6fL5SWOGyuEfuHpbHS8OS2Qjr+iohAxVkXAXQSsJY6rJ8bqCKgijnOT212sKSNrOvRcen3vZP0pL9+g+3zl5+ZcstnWEseNI46bSowVUWlpWcaSQUIvHRKAdwFsj7neBZ/QIwygCcAkteX2xStbGFIiOW86Jqs4yXhjhem95NRFRSFyu6fR9u3b07pQKpF/85N1vsA0fcTYPgJuoCuvnEEtLS2GxDHTCulixjOk6b3orER3oqdeINGGInbxdbu7iTEfAacJGCdEDWgi4DwxNo0cjp29aKhGR5TK5iYZTfT63sn6U11drft8la4BbvcUcjhGUXn5BkVlpluHpOsCDeBFgSnt1LNcBfVeBN55txVAG4C3AVys8N08AM8BqAMQAPARgGuVvJstDEmJJYyRJxFxkvHGCmNjzFrryeH4nJzO4pSDt6pFMrqICybPjJoiKaT5KMhFcQOJZip1hHQx603renK7uxW1QQ/LKSUnhtjF1+MJCkwoSMB0AnYK/68joITc7jZZg5t00DoUCsWdI3q2IdOGRmrLTLeVnd66nt8L/35J53LjgjFmA/B3AOMA3AfgHgDFALYLTrrJsA3AA+CjT3wVPGP6P8bYFYY02AAcOnQo6TN6Gi7EQtRVEflhtS5Aj6w6hHD4DM6eXYzOzhAuu+xaXZOqJUMyuvh8PhAVoKtrIIDB4MOpAIwNBWOX4NVX5cPjZCq5XrThhV1C69MACLySOrnuRMl4SQYlGYBjdZhEBMYYgCPgBSluAI0AVgH4OgCrrMGNnqF05BAMBvHSS9viGlro+b2V9seI+aqlTD3GiirIcSmtF4D14E9I/9Sz3CR1rgQfqmiM5N5I8LqsNUnevRy8OdX9knsWANUAfp+s7mw5IXV2dma6CRLdximy258SAjkWC854D5Pdfpbc7rq0Opcmo4vf7yencwwxtk84ZYSI47qJsdPEcbx4Q070lcnketE6mW6y2dYSY0Vkt09ULN5JdbxoDeDbo0P6KgFDhfFRQsBmAk6RxxOULcNosfP69VuouPj+uOI4vb93pny7tMCotQU66pB+Fuf6q8AEQuB1StLftqmtR0V7/gbgA5n7OwDsSPLuRgDnAdhi7j8F4ByAAYnezxaGZHQcLiWQTjK7fSIBLoEZeaMMHMRJ7PP5qKqqKm5cMj2ghC6802AZAUcI8An5YsrIYpkZFV8sFpmKAq7UPycRUh0vavQ6se0Vo3Y7ndVkta4g4GYC9hJjPmKsiqzW26iiYrNsvUaJsTyesfSNb3yakNkY8b0zbdCjBOmOZaeFAYQFpiN3xf1NbT0q2nMGwEsy9/8NQEOSd38DoFrm/jzh5HRpovezhSGdPXs2002IwOfzkcMxkgoLt8c1cLDbJ1JenjtuCH69oIQu3d3dkrAqUwVl+2ME3JQwk2amd7mpLGapjhctJwaxvS0tLRG6Wa0jBXoXE8dNJ8ZKyGqdRBUVm1JqnxqIzHXatLMJmWtf/t6pwKi1JR5D0qpDYnGueL8ZiUIAzTL3zwIoSOFd8fcoMMYeZIxVMsYq6+rq0NjYiLq6OtTW1qK5uRlerxeBQAAHDhxAOBzG7t27AfTY8+/evRvhcBgHDhxAIBCA1+tFc3MzamtrIZZ3/Phx+P1+HDp0CMFgEHv27IkqQ/y3qqoK586dg9frRVtbG06ePIn6+nrU19fj5MmTaGtrw5EjR3Du3DlUVVXJlrFnzx4Eg0EcOnQIfr8fx48fT6lPZ8+eRVnZbBQXl2DGjOG46qqDmDChEWVln2PIkC7MmvUxQqFm3HffoyCqwsqVv0Zn518QDOZj06ZnIn3av38/Dhw4gCNHjmjuU01NTdI+7d+/H6EQw+rVvwJjL2LVqpfAceVYvXodjh2rxZ49e2S/U0tLCx544B5UVb2H//zP76O6+mPMm/c1WCyWuN/pyJEjun2nhoYGDBo0CG1tbaq/0+HDh1Mae3a7HU89VQ6b7XHMmvUphg5tw5Qp+zBu3DNYvfpBNDU19eqT3W5Hc3MzBg8ejK9//Vbs3bsDDz00F8OH/wVLlryF8eO3Yc6c3+PKK3+LXbv2Rtpm9HzyeDxYvLgMhYWncdddVcjPP4eysiMoKjqGadNGwmKxoL6+HqdPn8batSvxt7+9iffeew3vvPMrbN26sRd99J5P7e3tePHFf8ONN96OFSu+gzvvXIhnn30eR48eVbVGaB17nZ2duvcpEAjELqsRMJ5ZKQdjbJOqFwQQ0VNa3ksGxth5AN8nonUx97eC94eKG8qWMfYXAPlEND3mfhmAP4O3tvtHvPevuuoqqqysTKn9eqCurg5DhgzJdDMA8I6Do0dPBtEOdHS8jM7O/QBeAGNOEB0EsAZE+8DYp2BMVBKHQHQQLtddOHx4J773vRd1yWKrhC5Hjx5FaelCQTEfRjgcBsdxYIxDOFyKDz98XXWGzmyHHuOlJ8L2r8Hv+5qxZMndir+TlO6xSDfdn3jiaXz8cRP27LkbFsulEJ2gH3zwUt0iz6fSNj4bcGwk9/S0zai1hTG2i4iuir2vOgexUYwlBTRD5iQDcZYkxlkAF8d5V/w965Gbm5vW+jo6OuKm3JamQ7DZvg/gZ+js/DLCYYYBA1oADMD585dImBEgDcG/fv1T+N3vTuuSlkIJXWJTLOTk8EIDo1MsZBKJ6JLo20qRavr1TKW2iEUwGEQ4HEZr62dobn4HQAvy8nKxYsUDGU810pNEc0dUEk3gBWzbNhPr168xxGpWinSvLf0hxM9+8IniYzEBfD6mZO+OFEzHY989D6Am9eYZD7/fr3uZciFSYsPAxItD1pNl9UaEw6+CqAFAE86fH4xz5zpAdBzhcK3kDT5mHGPNePPNP+qWxVYJXdJhVqwXUg1bI77f1NTU6zel3zYWWs2TjaK7Whpt2vQMXnnlIEaMeBFu9yEUFn4Kq/UacFyO6hO53siUe4EURqwtCSGnWKJoBf+NyZ5J8O4sre+qqGMVeOu+UZJ7IwB0A3g0ybtXgDdeuE9yzwI+RfsfktWdLUYN7e3tupUl5/AoWnGpDWtSXr6B8vKuiAq3DxwgoIyAK3qF4F+2bJUukZtFyNFFTjmcaYV1MqQatib2/YkTS3u9nwmrQT3proVGUuOMyy5rT6v5vhJk0r1AhJ5rixTQamUnLOx/B+80mqPg+VwAd4I3uz6f7PlULwB28CeZKvCpEL8GYA+Ao+D1Q+JzlwiM68mY938DXrS3FMCN4CM+dAG4Mlnd2cKQDh48qFtZ0QtTmGy2GmKsjGy2UcRxDrLZ1lJRUXfSyZEoIRlQRUAhMRZtZdfS0qLrBJTSRcmCla1muKkyi9j3Fy+uNNTPRi30oLsSGsXWIzVfX7r0oGF5uVJBptwLROi5tkiRCkP6EngFfxhAPYBfgXdG/SqAUgAzANwGYA2A34F3vQ4B+BOACcnK1+MCrwd6C3zYoHYA/wVgRMwzI4TT0OaY+1YAz4M3H+8CsBPATCX1ZgtDMiqhXn5+G3FckxBKZxwB/yTG5pPdviXp5PV6veRwTIox/ZaGE7qa3nnnnV5+SHpOwEyfAPRAqsxC7v0RI6JDDOmVUyhTSEajHlPz6M2IdAM0YkTyTVYmkOnTu1H1aGZI1LNwTwfwS2HRl/M3CgNoAe8Ie7XScvvylS0M6bPPPtOlHOnCJM2aKiapY2ynEF2az6Cq/IRURxwXlk3ZHAs9J6BIl0yfAFJBqsxC7v01az6Ler8v04coOY2WL18ddzMiblRWrfowqzcqmTq967W2xCIeQ1KstSOijwB8xBjLATAZvOLfJZw6GgDsA/ApEYWVlmlCH1x++eW6lBMde8wB3oUsB6LBgc12MQKBCwAMRjjsA5FdMEHtrYQeMGAAxowZgfr6zwE8DKIXwZgbRDWwWtdj6dIFsorrVK23pBDpkkg5HA7zyuFkJsZKrc/0RqrWaHLv/8d/XI5gsA5EjcjPz4+yjARizYuzy7BDDoloBDQJhjLvyVqqVVd/DOBFbNu2GEABGGvGgw/enXELu1iIxiPphl5ri1KotrIjohAR/ZOIXiOi54joX4no50S0y2RGmYFeSbSklk+8ZRyBD9y5Elbr3Rg0yIO8vGYAXjD2zYRJ9TZtegbV1RfCar0NfAD1SSAah9zcmVi5cnLSCa9HcEmRLqkkKtRqfaYXUrVG6/0+YcGCd9HYeF9UwNuNGx8TLCONS5hoFBLRaM6cW8GYI66lWlNTE7Zu3Yj//u/X8OGHr8PrrcTWrRszbmGXLci6BH0ANiNGH2Ne2SWy0xOxMekYK4oYMojijPLyDQnFB7EiII/HT05nFRUWbie3uyQjIiCtOqRs0D2lKsZU8k2lBg5aREOZNgiJRyO9DWVM6AOkYNQQBnC35O85AAqSvfdFuLKFIVVWVupept/vj5h6q10I5WT6Ho+fXC5v3AjaRkBKl5aWFlq+fDW53WMV90VOt+Lx+Mnh2JkRxprqoi/GGayoeFe3xVmtubXRjEuufCWbCiPmUH+AUXRJhSE1AVgq+TskZVBf5CtbGJLRULuISBfyoqJustu3EMeNJY6bShznVJytUg/ELphudzEtW7aKWlpakr4bbeQh7cd04jgXLV++Omt8lZTACGs6pSfITKV8j647O/3MvohIhSHtAK8EGCb8HTYZUnYxpL1798b9LVOiFHGh4vP1zBes85rIZqtJm8hr7969sgumwzGPli9frcpk2m7fIvTjTMRS0OGYl3XWWIkg9ufhhz/W5YSkNS9SpkSfieZCojn0RYZRdEmFId0APjdQCMAh4d/XAdwCwJPs/f58ZQtD6urq6nUvkztSsf7y8g3EcU4hAZ6P8vPbaMiQcNrk92fPno1ZMMOUn99GjFURx7nJ7S5OSpP167eQwzFH4uDbO7dTX9JDrF+/hUaMuFcXxqD0xNUXzMq7uroytnnLtP4tEeTWFj0QjyEltbIjor8DmAjg+4L4jgG4G8D/ADjNGDvNGPsfxtjTjLE7GWMjNNpXmNCIkydP9ronTTHN2PsIhf6Gl17aF5Vi2khYLBYsW3Y/nM4xcLnGwu12YuDAgQBY2mJxHT58GFJz7/Z2Pzo7u8HYeACjEQq93ivtdiyeemod5s27CIwBjHEAmmCz5WLgwPy0xhTTC089tQ5r1kzXxZpOqfViNsRki4U05l0wGMTLL7+adkvKTFtwKoHc2mIktKSfCAN4DHxonskAJglXEXifJABoJiKnju3MSmRL+om2tjYMGjQo8ndPCoh30dlpR2dnAAADkQ822y2ord2HwYMHG94uaSqK3j40M+H1Vqo261bjD+Tz+XD55deBaAc4zoX6+kYADhA1grGZcLkqQeRP2paOjg6MGnUlwuG/w2IZIjCm1PqRSbS1tSEnJyclvyrxO/zkJ6/itdeOJEyPYMQ40IqetBk96U1Gj74Yfv8InDnzdFpTPGQ6tYQSxK4teiFe+gkt0b63APgHEf0nEW0gotlENBTAMPBx5J4C8F5qzTWhBi0tLVF/iztSnhl1g3dydYGx8ejsHIh16zanpV16RnTWsps8d+5cpP5gsA48U26E6FfFcXZFu3S73Y6lSxcCeBThcENK/cgGtLS0aPbziv0Ov/jF71BScjbhiSuTEdVjo39LJQcc9yHC4e346CNgyJCxukSYV9MuPrWEPpHt1dSrJhp67NpiOOTkeObVt3RIPp8v6m8+bE+JoCsJRmLIMXaGGCtJq8myXhZOWpTiPp8vUr/bPZY4rpgYKyG7fUskQKxSPUZ/stSKHS9qEO87JPNNSzf94kWtd7ujdVludzcxto8mTbotEg4rHXH80h0/UKtOOZWxkghINZadefUdhkREtHz5amLspkikbZ4Z8YFRMxEwMxXFrValuJQufr+fli1bRQ7HnJQU+tmsgFYKrYuMHsYJ6aKfHOMsKJhNdvvEqLaLMRuvuOIb5HBUU1FRKC0GF+k29NBq5ZhuhtQfEvR94dHV1dXr3ne/uwlWaxWAawHwohSb7VLYbIuRLFyOEUglFJBWpbiULna7HS+++BweeujylBT6eoQ0MgLJRDHS3+XGixLoYZyQDvrFE4dZLC8iEKgTxLc8GGPguCYUFATQ1NSK+vpGtLZ6EQrpI06M913SKcZMRTyodaxohcmQ+gEuvPDCXvcGDx6MVau+hcLCiSgo+CFcrkrY7Q+C6NE+p/fQGosuli5i4Favt7LfxC1LpluT+/0Xv/itJkuuVGICphPxGKfFMgp5eYMQDK6I9KG19ShCoUdx4oQFHHcvgK8hELgGY8eeTSmOnxzdH3tsIw4fPhxhAD2ZlY2NH5jKRkJubTESJkPqB4g3oJ56ah0eeuhyWCz3ASjrUwEzpdC6m4xHl2w45aSajlxErJKeaEeUKbvc79XVnZrM//tKuvdEjDM/PxdLlowDYzMRCk1HV9c0WK2X4ZprtsLlqoTD8Ws4nR/A6/0c586d09yGaLp/gPb2P+L739+JSZNuiWwaAKRlg5TKRiLtJvlycjzz6ls6pHjOa6K83ufz9Xm9hxaleDKnvkzog/R0WE6mh/D5fLK/jxr1uQ6x67LbuCOZzsTv99P27dvJ7Z5CQ4YQjRnTSW53d0SHpFTPKjeGEiW65Lhx5HJ50x6lQqsOKd2OsRlf1PvylS0MKTa8R6ajNBgJNUwkXtiTTNJHzxA6ySy1tm/fLvv7I4/sTdmwJduNO5QwTt4adSzZbDW0ZMlO4rh64jgf2Ww1SRl2ojGULNElH2Q4vVEqtG4ksi50kHllP0OKRTbEDctmZIo+eltWJSrP7R5LO3fyUcnV1pftzEYJlEoHSkvLiLFbhNMLEWO1xNgtVFpalrD8RGNI+l3c7m6B0ZFg8dqTbbmvWbvqiXgMydQh9QNIk2hlyuEuGyGXXMxI+iTTC+kdQsdut+Oee+aiu3sJgsGjAIBQ6Aza2x+A39+Or31tFfx+P9rbH0AodEb43YfFi38jq/PpC6FskiG2D5dddi22bfsVBgwY0OvZjo4O1NScgNV6GVatehm8NeqNsFovQ03NyYQWi4nGEICEiS45zp4xQxC1+tN0J+gzGVI/wOTJkyP/z8a4YUqgl5JfCildRBhBH6ULuZ5WamKdv/jFGzh//iSamqaitXU0/P6rAJyC3f5PcNyHsNv/CeAUOjqujlhycVxb3Cy/iQwk+gLU9MHn84ExBwYPfha//vVjcDheh8tVicGDnwVjhXHHgpIxJFrQcdwNsFpnAZgMq3UEBg5cl5WGIPEgN4eMhMmQ+gGku5i+Yporwshdudzuzgj6KF0E9bBSExn3unVP4eWX9wPYgUGD9sLh2IsLLpgEIIyBA/8Ei2UYAMBiGYaBA/8Eu92Gv/71ZXi9lfj612/tZcml58nRiM2F0nq3bfsVGPsB+JiF4V59kLZNOhYWLz4Ei2WUotOLkjEkdTHYvftNPProUgwc+N8gurZPWbtmXQpz8zJ1SEZAlGWXl29Ie1vV0ieR3F2tXkirclmqRHe7pxDHOchmq6EhQ8KROp3OU8Rx7l4hcJToK/QIZZNpY5rq6mqy2ycKRgT1MSlPptHy5at7ta2iYlPaUttni/4mGwDTqKH/MqTPPvss6u9sNs2NXlinCQvr2khsOT3Dp8TSpXcbEtNHyQKrdSFXuzhJF0CXyytk320SFlxpGJxicjh2JmSOcnTRw+Ai0xuh8vINxFhRxEBBzF1ls9WQzTaUHI55vdpWUbGZ1q/fQqtWrSWHYxK53SUqNwjZN8f0RLw5lCpMhtSPGVK8SZCNOzLpoiUGthRj7CVbzH0+H23fvl1xfK1ki0My+ihZYNMRkyy2Do/HTxw3Vlh4fVHx1+z24Unj9cWjSyoMJdNJ+MT6ezIUn4lYzQE3kM02LG7byss30EUXfYmczimKGZK03mybY6lC2iejGGw8hmTqkPoBampqZO8bEZEgFf1ArJ6C4zgw5gLwPAKBXyMUqkcweFSwGOuR4Xd1dWHGjK9gyJAJuPHGb2HIkAmYMeMrSeNsxaOLiET0UapTSUf0glglOsfZYbUuALAGRA0Ih8OROh95ZGnSeH3x6JJKKJtMG9OI9Q8a9B3YbHwfRKu5vLwjsNmGyrbN78/Ftm2foqzsNeTm7gTwnipDjmRzLFP6NC2Q0+e+9NK29FpZynEp8+pbJ6T29nbD69BDPyAn3uJTijcR8CVibCRx3FRirIhKS8siZWv1FUmFLmpEcUaLb+ROH0VF3WSzrSWOc5LbPa1XnYl27snoomXXny0nJOkp0uXyCk6oJbL+WC7XaeI4J7lcXrrssnZd25xpfZoWyJ2QJ0xYYojIFeYJqf+isbHR8Dr0MAmWs07iU4H7ADSA6LcAfg+r9X1UVxdi06ZnUF9fj48/3g3gFTA2FACEf1/Bxx9/ivr6+rj1pUIXNdZ4RgdtlTuFhcNNsNmOY82ab+Gjj37Vq85EO/dkdNFyss50nLvY+jnODsbsIFqPpUsXYunShb3aFgyuQF7eIFgsozB2bA9N9DjVqZkv2XCKiicRGD9+RVr9F02G1A+Qn59vaPl6mQTLLVrB4BmEQrzDoMMxGE6nFYMHj0ZODl82b3bqjDAjEfzfhThw4EBUO6UTOxW6aFlgpQu53otMPHHaM89sUs08jBov6YperaV+ud+WLBmH/HwLQiEfzpzpoUmqLhJK50s2OSLHE7nW1w9FWv0X5Y5N5tW3RHanT582tHw9s1vGireczmKyWDzEWAlx3HTiuLGRjK4ez3TauXMncZxDYjlFEbEdxzmjssLGikdOnTqVUr+1iOKMFtXooUQ3erxkWtEfW7/079jfRDFVWdkB3SwDvV4vud1TyOXy9jLBl86XTFslShFP5FpWdsAQkStMK7v+x5DEyVVTU2NY2eIklhusLpeXHI5RmrJKiuWvWPE4MVYm0Q/xmW1ttrWRiZBMhxRvYv/rv76gOy2SIZsWmXhIlVHrDaMYmJLNgfjM7NnzdNH/dXd3U3n5BuI4h2Ca37PBkuqmMq1zk4Pc2L3llsfSqkPK+KLel69MMaTYiTZ16o267cLjTWKpA6GoUGesiOz2iZpPAT2mujXEcU2RiMg8wymi8vINREQUCASotLSMOM5JHFdCHOek0tIyCgQCCSf21Kmz0jqxs3GRkcPZs2d1L1MLU1HCMFJhVmo2B7W1tbowRbFOq3UvMbaLgCORDZbTOZ/KyzeQ1+ulqqoq3aQOWiBHVzmJwNatz8nO61Q3ESZD6kcMKXaifeMbn+q2C483iUUHQo9nHNlso4ixskikAK2ngB5RYFjIGdPjYW+3T6Tq6uqo5+X8kBKJE7/xjYfTmmJBT9GmkdDzRJ2KiDIRw0hV9Kl2c6AHTfh0FiWC9eNYAqYRUEzAI8SYg6ZOvYHc7hLyeKaT211MdvtwcrvrVG9eUmEGajcBsXTRSyRtMqR+wpDkJtqECZ267MKVTGKfz0dO5xhyuU6nfAqIra+oKERudze5XKcVl5WozePGTTVs0qptSyrfRm+RVmdnpy7lEGkXUSajVaohpZJtDqqqqqJoqgdNvF6vsFmTOubWEWPzyWK5iAoKZkf1x2qdRFbrbYr7qAczKC/fQAUFd0Xmb7I6Y+mil0g6HkMyrez6GOSsYa699pgupqpKnBv9fj9yclywWIbEfUYpYi3ZGOMANIFotWJT4UTWcCtWLNFkbqzVxF1v02ejrLCOHTsW+b+ejs6AcutLubFGFAbgQDg8EK+99puUrDpFs/1gsA6hUFAom0/P4fd/jhtv/HoUTb1er+r+xyI/Px9dXa0AngdjfLsZKwLwPILBDuTkPBvVn/z8P4CxXQCuU2SVmIrrRTAYxGOPbcTzz/8ELS2b0dSUg/b2duTkuBPSNXasGJ3axmRIfQxy/jF/+MM4XaJ5K/G90Ttath6mwvHKWLLkPlVtAVKfdHqaPhuVDmLcuHG6MLtUojNEjyNCe3s76usb0dBQjcbGGnR2WpGT41ZdrogBAwZg9OiL0dh4HxoaqlFf34jWVi/a2x9EOOwC8I8omv7Hf/yn4n7Hg9/vh9U6FIzlAQgJd0MA8gAUIhxuRDjcM374SOyX4G9/ezOp/1qq43LTpmewbdunAMaAsUsBONDZ2Y32dn9Cuo4bNy7y/3RE4zAZUh+D3C58wYKPdHFAVLLD1/sUoIdTabwy9u3bp6otQOqTTk1/xNNJfX19r1OKkbvRzz77zDBHZ0DZ5kQ6jlpbj6KzsxtEQQBPIy9vEQKBBrS2HlVdrohNm55BdfWFsFqvBGN3AfgaAoFr0N39oXAyyUcweBSM5YPjXkAw2J3yDt/j8cBuP4+8vGYATQAaADQhJ+cMgLNobn4MDQ2T0db2NIiCkf6MHDkyqS+ZdFwShSOnPiXjUhxLFsuLAFpA5AOQA2AwOjsDCAbrEI+ulZWVsuk6pNA1tY2cHK8vXeCZ6joAxwF0AdgDYI7Cd18DQDLXD5W8n3krO/1D1Sgpuz9HOk6HpZxIP7d7rJAuwUE226iowJ5GGkjo2cdUdAo9JtJOwUR6XMREmrfiLFOs60jUPzGMkMNxmBhzk822gThubJTfm9s9TTVN5XR7Ij1crtPkdneTzXaEGLuFLJbVxHFNggVpj9WdUt0LbzAhWqT2GP/YbDVJv5nUL8pm2xCj49pHBQV39WqHEmtbI3RIGWcoqV4AtgI4B6AcwPUAXgIQBnCrgndfA1APYFrMdYmSurPFD+njjz82rGyjrH3SgcrKSk3v9Swq3sildtIloo1YvmjuLrdIGckY3333XcMcndVuTuI5kfJMaRQ5ncWqy43HzIuKQgSMJuAWyYJ8hhibS48+uk4xTRMZF0jpwadXcQrpVc5HLEkZ20cc56Ty8g2qNnFaYjrK+UXl5pYRY2OFv+XbIY7Rior341rbprIZ7ZcMCYBbYEZPxdz/G4C9Ct5/DcAprfVnmiGZMAbRfk9jo/yekiGZJZTIaPjAnj6J79UZ4rhxwsLMMxyjnGyNYHZaNyfJ2uLz+XQL9OpynSbAQcCuCN05LkiMHSS7fbim3FTxvovf76ft27eT2z0lyoLU4wmS292t+kQWbVI+TjjdjSObbS253WOTplCJ3fxYravpwgtvoqVLv93rXSXjwyg/pL6uQ7oJwAUAXo+5/zqAiYyxkelvUvqxe/fuTDchK6GVLk8//RwOHy6Ew7EXTuc+OBx7cfhwIZ5++rmk7ybTzYi6AD7tBgMvy4dglVUglMLrBIyKDVddXa17IFStqU6S6STdbrdugV6DwRWw2QYjP78YUh2P3T4M3/72Q4qU8mrSklx99dUAWtHa6kV9fSMaG5vR0NAEv/8EGGtRpXPx+XxgzIHBg5+Fy1UJh+N1uFyVGDz4WTBWKNt2aVsHDx4Fmy0XjFlAtA6BwKs4f34f/vCH3b0MWqT6qnvv7ZlDUn2VEaltAPT5E9Kz4PVGLOb+FPC6oNlJ3n8NwHkAjQCCAA4DWAsgR0n92XJCCoVCmW5CVkILXVI5PSjdWSo9IUnL1VM0GgqFMqoHjO2PEW2RK7O8fEMkDYV4YuH/PUNDhkxQRF+1uj2tqVNioWVcyrW1qChENttmYuwmcjpPyZ7wpHUNGxYyRI+KfnpCKgTQInRQirOS3xPhMwCPApgH4GsAdgB4BrweShaMsQcZY5WMscq6ujo0Njairq4OtbW1aG5uhtfrRSAQwIEDBxAOhyO7dD5qNb9rD4fDOHDgAAKBALxeL5qbm1FbWwuxvOPHj8Pv9+PQoUMIBoPYs2dPVBniv1VVVTh37hw+/PBDtLW14eTJk6ivr0d9fT1OnjyJtrY2HDlyBOfOnUNVVZVsGXv27EEwGMShQ4fg9/tx/PjxrOjTkSNHUu7TBx98oLpPlZWVAApx//214Lgwbr/9AAoKApg1y48RIyaguro6bp/4MgqxZMkpAMCiRXx75s+vR37+UOzbtw+hUAhr1z6M8eP/BVdffRozZx7GRRfV4I47/h0u1xzMm/cGliy5G4cOHYr0yW63o729HQMGDNDlO73//vvo7u7G4sV3Y/fuv+Gdd36Mjz/+E1avXoZTp05F9Um0stq5c2fK3+mTTz7BE088ja1bv4fS0oXYuPFpbNy4FYcPH8a6dauxY8d/4S9/eQkff/wnLF++GO3t7Qn71NHRgR07dqC9vb3X2PP5fHj44aWorPwL/ud/XkRV1XtYsmQBHnzwXtx99y8RDjdgyZI9CIcbsHjxb7Bx4yocPXo0aZ8CgQDy889hzpydUd/4vvs+ANCMs2fPRuZTQ0MDhgwpwqRJMzBlysOYMWMxiovvwx13fAVNTa3Ys2eP4vl0/vx5PPbYckyc+D2MGnUE11xzHA7Hccye/VM88MDCSNJF6VzweDyYO7cUVusplJUdwdChbZg61YuSkk9w+eVbcM01QQwd2oabb27DoEH/ira2NnR0dODQoUNYsmQBFi/+Db761V345jf3wGI5jdmzf4rlyxehoaEh5TUiLuS4VKYuALMgb/UWe70rPP9TAHUy5RQLz92joQ0/EN4tTvZsJk9I0l2mnp73/Qla6GL0CYkoevfOW9k5BSu79CRxU0IXI6KW66UTS6Vt8U5jbW1tuvdDekIRLf1Eww0tlpKxbXe7S2jZslXU0tKiuK0Ox05ibDzl57clPOGJdY0bN9WQEzT6glEDABuAcQqui4Xn/wUpiOzitEF895vJns0EQ5KbjC+88P/6vMm1ERZ7WuOTpbJwqnlX7LMWxX0qUEIXvQ0qssXUXNoeKc3VjJVkIkbpdzXCeOTTTz+lBx54OBIXLxFDlmNiamLoHThwwJCx2ScYktoLwL0C8xgTc3+RcH+khjKnCu9+I9mzmWBIcpPx6quXZVV6AxFKmIyUwbrd08jpHKPaHDYetES19vv9VF1dTeXlG3otOC0tLSr6k70+WsnoYoQVnl5+Vam2Ld6Y1DpW5HVhPZvF0tIycjj0PRVqCW4sbasahm5EZHii/suQRLPvTTH3/wqgSmOZL4D3Yxqd7Nl0M6R4k/HWW/fppmzUA2pEKuvXbyGHY37E4Y+xfcRYGZWWlqW8iKvJ+yPX5vLyDVRdXU0tLS2qRUTZ7KOVjC5GOOXqxeS0ti3ZmNQjR5TcQu9wzKXS0rKUNyhS3ziOGysYSTRFRG9q6Khm02RU7qx+yZD4fkUs7dYAmAngJwJDuS3mub8BqJH8fQmA9wAsB/AVALcB+Jnw7k+U1J1uhhRvMt5002nNC4URULoDExepZPmQtEJNZtREbTbKHyhTSEYXo5xy9RK1aWlbsrpTzaJrhD+VXNk8Q5oe8aHiOB8VFYU0bRaUbJqMyi4cjyH1dSs7AHgCwHcArATwfwBmAJhHRH+IeS4HgDSgWDt4a7y1AH4P4HcArgCwAsC3jW2yNsSLJeX3+6FbLKkUoSYGm8/nA1EBuroGAhiMHp+coWDsErz6amox23Jzc1Nu8yuvvI5XXnnd0AjH6UYyuugdr1CEHn5VWtqmZEwqHSvxkCwGot/v1+y3Iy2b4/g1oCceHUM4HNYUT06JL1GqdFGLPs+QiChERN8hokuIaAARXUZEb8o8N5OIRkj+PktEdwjv5RGRlYiuJKIfkxirPssQbzJ6PK+lHFhVL6gJTurxeBAON4KoASIzAiBMtlbk5DhTiiDMM+rU2hwK2REOX6ioPx0dHdi3bx/27duX1YxKCV2McMrVI5CulrYpTauSCowMPCotm+PssFoXAFgJotMACEQNugRXlkOqdFGLPs+QvmiQm4yXXz4oZe99vaBmYtrtdixa9A0Aq4XJJTKjlcjLux2MtaU0kZ1OZ8ptzsnpAMe1JOxPMBjEunWb4XaX4PLLb8Dll38dHs84rFv3VMq5i4yAErroxTzkoNXLX4yOfu7cOVVtUzImlY6VeDDqVClX9sCB62C1jgAwGVbrLHDcDbpE8JBDqnRRDTk5nnkpu7LFD+ngwYMZa4cc1OgKuru7BW/2okjEZ5ttLTkcc1PW0aihSzIdksMxj5zOUxHPfml/1q/fQlbrJGJsrhBxgY+PZrXelpV6pmwbL8mgh09UsjGpB03SHYV/xYrH6a9//Sv5fL6Uy48Ho8YK+qtRQyavbAkdlE0mxUTqJ6YYkdjhGEVu9xTdJnK89+WUufHaHAgEqKJiE9lsQ4nj3MRxxWS3D6eKis3U3d0tBL0sJsaKIxGke4J2VskGvsy0BV62jZdkSLYhUIJkY1JPmhj5faPdEvRzWo4Ho8aKyZD6MUP67LPPMt0EWaidmHpP5Fi6KNlpx7ZBurP2ePzkcOwkh2NOZDH0er3kcEySWD5Jr3pyOqf08n5Px0KSCNk6XuTQ0tJCdvtwYqwqkgMoP7+N3O46TRZ/8caYnjQxesORTqtPo8aKyZD6GUPK9C47E0i1z2onstJgqUpPSP3NfDwdWLZsFTE2PipdhOh/k02uDkTp2XAYZZKfbsRjSKZRQx9DMBjEE088jdGjJ6O0dCFGj56MbdteU6Q8F5XC2WwBJge5PkvD5ctBDLwp9lVLSnAl1ll2ux1Ll96DvLx8AI+AN8oIgegI8vLWY+nSBbDb7YamJFcLMeBltqOjowNvvfVHAEEQNQp3+dTbHR0nQHQ2rtGL2rGuB030SAufDGqsWPVAuseKyZD6GDZtegYvvbQPodDfwNj7INqBior/TTjotSzo2QQ1E13a1/nz10X6WltbC7UTWanF4FNPrcPKlV+D1foBGLsMwHjYbGVYuXJyxPJJupCEwx0IBo8iHO4wbCFJhMmTJ6etrlTA5wBywma7B7yZM08jnjmV4667bu1lvaZ0rMcyrFRpkq4Nh5Hm5XKQ0iUtG1q5Y5N5ZafILp48vaLiHyl5qWcz1IoopH1dt64y0ldRCay3h39sW6uqqqiqqkrWkKEn4+dYQec0NmnGTyOgNbV7utGTO+oU2e1bIplSGSshm22obJTrZN8rnljtn//8Z0ptNSLcUjykcz5XVlYaIoqEqUPq+wxJizw91XQKmdZTqZnoyfpaXr5B9UTW05RXr2RtapAN3zAVJDMqkULJWJePNzePli9fnRKN0qnbSXcAXyMYoMmQ+jhDSqQ8X7x4e9xdtpadW7ZYgxGpm+ixfX3kkb1Rfa2urtY8kVNd2PnvNzYSRFY84dpsNYYooxN9w7179+pal5GIt/jKRV5PNtarqqpixlKY8vPbiLEqWrLkYXK7i1Ma5+mWRCQbk3psRnbt2mUIo43HkEwdUh9BInn6W2/9UFaeDmiTOadDOasUajzgY/v6v/9bEnkeaMawYcM0Rx/QGl1ABP/9CjF48Gi43U44nQVwu50YPHg0jNAhJfqGJSUlCd/NJuOX2IgR1dUfAwDGjp3aS0eUbKzz6NEjtrf70dnZDcbG4623DiAUej2lcW5EuKVEiDcm9dQZ5+fnI51GFBk/ZfTlK90npHjy9Hnz7lOVNTKZHiTbzErViCikfb333sNZoy9LJ12T1bVv3z7Z95SejDMpBuxJw3Ca3O5ucrlO94qaEe93KV2KikLCSTVIjJ2hr3/9QfJ4/Lp8j0yLSfU8qe3bty+tJ6SML+p9+Uq3DimePP3pp7+X8D01C3o6lbNqoS7h3ziaNOk2w+XrapAukU6ib+h2T6O//vWvsjTUahCQLtoqEXsGAgEqLS0jjnMSx5UQxzmptLSMAoFAVB+dzlPEcfXE2BlibD6NG/c9Xcd5ppiS3huf1tZWU4fUV650M6R4jOXYsWOK3lcySbLxhKQFfr+fKisrs6q96VJGy3/DsLCQO+n225f0YiZaDQLSefr0er1kt0+Myp0lGvbY7RPJ6/VGJbITLzmm6naPJY4rJsZKyG7fQnfccUyXcZ5ppq33hvLEiROGjFuTIfUDhiQilrHoHVwx0wuPXjAy6GQqSMfuOfYb2mw1xNgtZLWupuuu+6zXQq3eICD9GxWfz0cc54hYKYoX/7eTjh49qriNfr+fli1bRQ7HHHK7z9ANN/h0GeeZnDui24HbXaLbd5LOIT3HbTyGZBo19EGkqmCXg1SRnW7l7BcNRny/WEi/YSg0HYHANOTkBNDV9Ue0tf0LmppuRWfnCLzyyq/Q0dGh2iBARDode/1+P/LyBgNYgx6jHh+ANcjLG4QTJ04obqPdbseLLz6Hhx66XBjnq1Ie55mKxiE1Ypg160H4/X60tz+AUOgMAH3TYBg9bk2G1A/Q1dWl+V05i5xNm57BU0+tMyQXTjqRCl36OqTWaa+99iQuuMCKUMgN4D0UFDwLoh0IBI7D7++OhEBKZM04cuRIpDNCgBw8Hg/y8y2wWkeAsZkA+M2S1ToC+fm5mDBhgqo2Smn0r//6KLzeSqxfvwYnT57UxDzSHdZHRKxFpd3+TwCn0NFxdcobynTPIZMh9QNceOGFmt9NZB6cjh2RGqg1R06FLtmMeHSIvR8MBvHd7z6P++5bgXPnOkG0EYANR48OBmMeAM+jq6tNMO1NbLZsZAI6peDjBi6EzXYcDscf4XC8Dofjj7DZjmPp0gVwu92a2mi32zFy5Eh897vPp2Qqne6wPoD8qcxiGYaBA/8Eu92Gv/715ZQ2lGmfQ3JyPPPKbh1SLA4fPqzpvb5iwKBVUayVLtmKeHQIBAKy9ysqNpHTOZ8cjp0ETCPgPAFNdOedVb2MAaSIpyvQqtzWU/egJK+Rlja++OJPdNH9pFuHZLRVrFFzCKZRQ/9lSF1dXZrey2YTbym0TnKtdFGDRIut3sYL8ehQWlomGw7HZhsacRHguLEEnCbgPA0adDKlKBFK+2WkxZmeUQr8fj+NHn2lLhuzdIf1MXpTadQciseQTJFdP8Dhw4c1vZcJEYNapKIo1koXJUjkDW9EdPV4dGDsu/j440/B2A9i7j+Prq4gGMsHx9lhtS4AY6vBWBPmzq1DQcF52GxPaBK3KRXlGhnxI1kb1IibfT4fbrnlFuTkeEAURigUBFFYte6no6MDJ0+exPr1a9KmfzValGrkHJKDyZD6GOT0BxMnTtRUVjboBZLphRIpiokG4ZNPPon7rla6KEGixVbLQqyVDjwcYMwVdcdiGQJgMILB/QCAgQPXwWa7FMB1ePXVhcjJmWWY5WRHRwf27duHV155PSvyPyWDx+PB7373Jlpbvaivb0RjYzPq6xvR2uqFko2Z3Abku999HhdffHFa5pCRVrFGziFZyB2bzCv7RHaJxB+ppBNIt4ihd73Jw9TEiiSKirqFNA5OcrunxX3XqDQLicQkvA+Icj+QVOgwZAiRy+UljnOSy3W6V312+/CIn02PKG8O/du/vWSIflDaFz6tezHl57fRkCHhrBUHi9i69V80R2LPFr89I/zbjJpDMHVIfZshGT3o0x3qRE1/ejt5riXGbiGbrSZjEQPi6d4cjknkdE5RrJdLhQ6JdEhO53yqqNicsTQFHo9fiEx/UGBKmTeYiTfGo3NVjRNyVY1TlKuqrxgGZRtMhtSHGVKyQf/xxx+npR2J2qeGmamdxNJTnNs9hTjOKTCjcMJ3s/2ElAodpAymx8pOnvHEJg40gi5yfbHbtxBjc4mxKioqCmXs5JDsFOr1emnduq3CpsFPLpeXPB6/otNcXzEMUgPpfE73CcnUIWUBUtGjAAVwuVy93klHCgEtyvuOjg588sknICpQ7EAodWD87W//BU7nGCFtA0v4rlGpuhPp3pYuXYilSxcq0supdaSMTcUgKszz8vLiptUQfZFmzboLs2Y9iNGjJ+Ptt9/RPX29XF94vdVEMHYjgsHpGYv4kUyn5/F48LOf/UJIK+8Dx3nAcXZFxj19wTAoEaTrhNx8NmKsJILJkDIIpQt6skF/9uxZ1WXqATXKe2m75s9fi8bGI4LSmHr1J94kttvtuPrqq8FYs6IFYM+ePXp0UxaJFMlKlcxaF7N4FmRy9+W+UWenVffcVnJ9YcwCu/1BOJ0XYvv2bYZbnMltwpRYaQ4YMAAPPbQAjY2laGz8JhoaJqO1tQKh0CNJjXuywTBIC+TWieuuuxUvvVRl+FhJCLljk3mlR2Snh/4gVicgn6J5Di1btiqtOXdi69JTD5SIFlJxQzoiLKfqh2SkbjDeN7roolpD9BuZUu4nEsklE6lVV1dTaWkZWa23ElBFQB0BVcRYGZWWlikaQy0tLbR8+Wpyu8fKikwziXhjMPZbuVynibEystnWpmWswNQhZRdD0kt/0N3dTQcPHpQts6ioW5DjFxPHFZPbXaLbRFEjO1dmKad8EsvRoqJiM1VUbIpalH7843/PikUhEdRaOarR18X7RkuXHjREv5Epi81kG5RE82zFiseJsSKaP/+fkXQWjDWRzXYk6UIcywjd7mJatmxVwmSZ6UIiJi1HE7e7mxjbRxw3LqI/M3KsmAwpyxiSVmWo3ILU3t4uWybPjOYTY2eI4+rJ6Txl+O5bjqEmThg3hbZv365pByalhdyiNGHCkj5jhZisfC1RD+J9oy996ZihFmDptNhMJY9TefkGcjhGEsdNpWHD2iUpLYLEcT5yu6clXIizxdw7UdvkMufKzceeDLpTyeXyGj5W4jEkU4eUIeipP2hsbOxVZjjcgUDgVwBeAGNOAASLZYhujolqZOeJ+spYG66++mpNsnaRFgBk9QTjx69Iua/p0snZ7XZ4PB74fD7Z9mpxto33jUpKfmqofiOdQXmVGIbE0+k98MA9yMlxAWjBpZcelb4NogaEw01x52GmUk0oMVbq6OjAK6/8Cp2dW9HUlIPGxmY0NeWgs3Mrtm37tRBMN1bfxyEvrx1EJyL3QiEfiotfxpw5txjSFzmYDClD0FMZKkZrlpbJe+gXCsyoFTabFYxxuobCV6q8T6WvSiZgvEWpvn4oUu2rkeFvRCRjeqksfnLf6OqrHf0mt1XsZicc7kAweBTB4FGIG7t41onDhg0D0IwLLrgetbUvoyfH0mkAq7Fo0fy4Y9PIVBNyY17Nxojf1FyArq4CAA4ALgAOdHUVwO/Phd/vl52PVusTmD59IjhuNsLhUnR0XIUTJz7Am29+hFGjJmH58tVobW3V3C9FkDs2mZfxIjsi/WTux44di1Lk8ymaS4jjXMRYVZS3fCKHPa2iFiWBLqurq6m8fIPivqoRUcUT25SVHUhJ3JAup8dkoh89fF2k3+j06dO6tFsrjAg663DMFXSSY4njphJjRRGjBLn6xPFltw8nYBxdffVNBAwnxqZEvZuoD3qPjURjXo14MFlmXZ/Pl3DtkWbTvfHGXWS1riJgNDE2nuz24broBWHqkLKPIYnQOkHFQTV79lxZxeUDDzxMF144JxJWJt4gVrL4a2mjXLnl5Ruouro6qff78uWryeGYp1g+Lzdhb755jWbrQr/fT++88w45HFdTUVFIkeGGVmaebGHTe/E7depU2iNzEBkX/bu7u5tKS8uIsTJBMc9HMi8snEulpWVxF3iHYx45HKfIbm+la675iIAbKS/PTeXlG+K2yefz0fbt28nn8+muQ4qn9+E3csnHiPg9vV4v2WyjJPpjIsbOEGPzyWYblXTcSiNXzJjxNQLGE1BMwGYCPiWHY17KejKTIWUxQ9IKcQBPmRJtOl1RsSlySrLZRhHHOclunxj3VJLMpFzrIqJ2wvac7ooVn+7ECdXS0iKJ5jCNbLahNHHiDNVt7u7upoqKzWS3DyfGRhNQSMBestvryOWqIY/HH9WOVBdZpacfvRa/7u5u2rr1OYllWAktX75ad8swuYXOKCMAkWGLC7m4geBdC8p6bcjWrFkvfN8q4rh64jgfTZz4OTkcpyKhgmLbHwgEqLS0jDjOIZzCHDR9+ix6/PGNulgV8kxgLNlsNYJxQX2EsTqdxeR2y4ejcrun0fLlq3tt+lyuYk2hkIhIwtDmUXHxJwQECThDwHwCKsjpPJWyhMBkSP2MIUl3zXffXRO1a7LZhkadLlwuLxUUzKby8g0Jy5HbfZWXb9C0iGjZ1YsLlsOxU5hEfBI5aSw0cZGOxwhEnxCHYx594xuf9rKqUuIXlJd3CwF/JsZaCXiMgAkEjCZgGjFWTFbrJKqo2BTVZq2LrFI66SXeXb9+C82btyFyMmCsihi7iWy2oSmfVqJFs72/i1HiTzmmLuaAYmwfud3dUfVZrcMIGCuML96q7qtf3Uv5+W2yC/z69Vto+vRZcYOvKjltJnvG6/WS3T6ROK4pql2MNZHVeik5HCNkaRc712PjG7pc3sildFyKIj/gJM2evYcAEq46AkrI7W5L2RTcZEj9jCFJJ+GECZ0xE9FFTuephBNfnCBVVVUJTbKdzjGaFhG1eg/pwtyzmJwmxs4Rx/kisdCkprwOxxwqLHyXHI6qyISTijd66BIWdp5OcrunxD3FtLS0kM02RGA+0wkYS8AsAm4lYC8BZ4ixKrJab6OKis26idKUOvpKv5uWBbylpYXs9uHkdH5KjJ0hoJEY6ybG6oixEnI45iRcsOLVLd0c8DvrskisQbEv/CJvTMw3ue/AR0GfGhk70ebNxQSMiIizOI7I5WonxqpkF/iCgjsJKCTGThHHdRPHhXrpZOJB6Qm6t94nTIy1Cc66TrJaPZSXdws5HB9HTukOxxyy24cn3Exq2cCIzJGxJnI6TwgnpDABIWJsGjkcOw07IfV5KzvG2BrG2B8YY3WMMWKMbVb5/h2MsU8ZY12MsROMsQ2MsRyDmqsbpNZF1157LHKft667UMiH0wPR+qe2tjbKWufGG+egvf0EgsHaqOdDIR9CoUZwnFOTJZFas3ap1RJjA5CTczGI7gPREYTDYbS2ehEK8VZ5wWAQP/jBT9DU9CHOnp2Lpqavo6HhOnR0XIRXX/0VxDh5Il3a2/2CxdFoEP0H4lnKPfbYBgQCEwHsAPAhgO3g4+VNBFAExhiczrEYOPCnePXV3+DYsWPQw9JKzhJu6dJxCIfDvayqBgwYoMqkWmqxtW7dZnR2DsQtt1hAxABcCCIOgBuMOQA8Lmu1F2vhNWrUlfj2t9dELK5ES8Rw+B10deUCeA1dXQVob/dHrAHffPMdhMMN6O6uBVE4UrYeMd/krDgBgOgE8vLawVjPMhcM1oG3Ol0IYCVEy7qbbtoLoocQDoeRk/Oi8A0JHR1WNDcvBlAAIgvC4WaEw40gagdjQ0BUiF27dsW1BlVqpen3+5GXNxjAGhD5QOQHUS2ALQDuB9ECdHV9gqamhWhoGAm//0rMnTsMdvtwAI4omorjb9my+zUlCvR4PLDbz8NqbcYtt5wB0AIgCMAH4CyA7xnnNiDHpfrSBeAggJ0AfgI+MNpmFe/eBCAE4GUA1wNYA6ALwL8oeT9bdEhFRXWRnZGSXVPsbtxqvY2s1kmyjoPSU4sYBVnpCUCNOEu6y7XbtxAwl4C1BIwj4Oooy6fly1cLita5gmw7SMBBAm4jq3VE5FQ3bFgo4vDH7zx7vNBj9UDl5RuIMYewIz1DQBsB3QTsE9rgjdptezzTqaqqitzuYmHH6Fd8Qop30kjm6CulXTxltBjVu0en1hNFwGYbSowVU07O5wTUC2KYMAE9tEmcIqOO8vPbosR85eUbyO3mvxt/Kpke5VzK0ytMdvtEystzE2M3RXSDbnddr/Gg9QQoF76ntLSMHA751O4u1ylhnBUTcAlxnEuwJHOR3b6FiorOU25uoyCmWkOAm4BTAr2CBDQRUE1AIeXlucluHy5rWKT0BC01JODTzRcTUCIYEjwmGCjUEsf5yOH4nByOeTR16g3CqYo35BD1rXqIQcVv7vHUks3WInzzr5DNNsS0skt0AeCEfy0aGNKnAHbE3HsSwHkARcnezzRDEsUBvGK151heUbE5rme6/ASpE5hYSa/jfUXFJrJaJwnhh6b30qEoaZ9SsYEohuPz6JwRZOgnyWbbIzDDceTz+cjlGiOI1eok8u2gEIPMSStXriWncz49/vj7JIZEYWw+2e1bZEVF69dvoYKC2YK5cIiA88KC0yDUcTUBH1NubmPUhC8v3yAox8cTY8Vkt28hlyt+NIxUk/FFi2J6yqio2ESPP/4k2e3DieN4g5DcXCfl5V1BLhcvunU4dhJj4yk39wlaseJ5gfGKyuq5ZLNtjrtQim3Jz2+L6Dh4q60SuvDCm8hunxijtxFFYfXkdneTzVZDjBWR03lYiB5S0suEWKtxSKLwPfHGX0XFpoiZODCEgK/QihV/pdzcBmHhnUu5uU8Q0EhACwFjCHhY2ADVCnT7XBDnDiFgTiTvk3TjoFZsLTKBwsJ3ibFJxFgrMXZSoJc8Ta3W1RJm1SQYQaRuKCJdW3jxnZOs1pHkchWbDEnJpZYhAbhIeP6BmPsjhfv3Jysj0wxJROyuMt5ErK6uTjhBqqqqeu1OKyo2k9V6W8QiSapD0dq+eOju7qZly1YJi2p91K5PbOP27dvJ4ZhEwDQCQsKOlYR/fWS1fomqq6ujLO74/Elrqaiou9fi7vP5BAstr7CY1glMqUVYkA4TUETAYSHGWU1MUrzep4Z4E1bpiTHRQma3T6SCgtkxJ9xJZLHcTIwdFJhFHQFzCLgiwoTFhHnAp2S3P0XAcOGUWULAWnI6TyZsS09oGVHhTsRx06mwcHtUxtqecFX8bt7prO0VtNPj8ZPDsZPc7pLImNBqHKLkPbn5UVpaRsANwsamVtClNQmnooMCE2om4O/CCblJOK2MI2Aq8frFEQSUErA26kQYO7aU6hjlfAhttj29Tp0eTzAS5sfprCa7fYtgTTeVOM6Z0GxdLcrLN1BBwexIOCG9LCNNhtT7+ZuF56fL/NYB4LlkZWQLQ4qXREtOIa5mgkif5ydady/jAr0hii6czlNRymjpJHe7i4XF9bSwWw0Kp5qqKLPWjz/+mLxeb0JLQeni37OYnibAR8DnxNg8ys0ti5rwK1eupdgkfEVFIXI6T1E8s1q14hv5dOWnhcXfG7W4MzaGgL0SZhEWdvIlxFhJRJzI9+8mWrv2PXK7Wygv7yEC3AldAsS2OJ2nhE2C6GR5JiLms9lGUUHBXcI46RbMrYvIbp9ITmcx2WyjojYDsacErcYhqb5XWPiRsNiHadWqysiCb7O1CIzqMgIcBAwTTspBAtqFTcpOgSn9k4BxxJg/cnqJPX2rZbRSP7yejVJtxOJULhCqKFJ3u6foFgjV7/dTRcWThlhGxmNIfd6oIQUUCv82y/zWLPk9CoyxBxljlYyxyrq6OjQ2NqKurg61tbVobm6G1+tFIBDAgQMHEA6HsXv3bgDArl27AAC7d+9GOBzGgQMHEAgE4PV60dzcjNraWojlHT9+HH6/H4cOHUIwGIzk9RHLEP+tqqrCuXPnMGjQILS1teHkyZOor69HfX09Tp48iVAohFAoBIvFgqqqKtjtdmzdWoFweCXuu+8DAMD8+R8hN/dRbNy4CkSE48ePR/pUXV2NESMuxaxZfhQWnsPXv34YOTnA/ffXAihAZWWl7n06evQovvWt+3Dzza9gyJATmDbtJMaOrca4cc9g7dpvIy8vDxs2rIHL5cbixT8HYw1YvfpTAF6Ul/8fli5dgJqaGgSDQQwePBhutxvLlt2PRx+dgssvX4Yrr1yMkSMXYuPGa1FRsQrt7e3guBbcc88HGDhwHR599GYA12HFih+B48pw//03YsyYtzBv3tuYPPkV3HzzbMyefSNKSi7HddcF4HL5MXv2IeTlhXHvvY1grDBCF+l3qq2txVe+cjMuusiKadNOYvz4eowfX48ZM85h6NBi7Nu3D+fOnUv4nXJy1uDuu+/CkCFuXHPNcYwZ04iJE49gxowZKC624dZbj8PhCGDBggPgOBdWrLgHgB2LFvHt+fa3r4fdvh8tLW+hsHAe7rijG5s3r8a77/4MH3/8J6xevQynTp2K+k41NTVYsmQBlix5A0Q+rFxZCSIf7r//Nbjd9+ArXzmMsWMvwrp1MzBhwgMYN+5elJV9jo0bH8Ff/vISPvtsOxYvvhPhcBMWLeLpsWjRLoRCPtx993VwOBzYu3cv3O7RuO66AMaMacRll9Vh8uRajBp1Aa6/fhY+//xz2fnk8/lw330LkZvrwu23H0BBQQDXX+/FqFEX4KqrpuPIkSOyY48voxAPPcQAnMXKlR/ixRcn4/77D2DQoCDuvPMILrkkH7NmPYYrrrgRV1yxBtdf/wIuueQY7rzzNAYNysPixf8L4BasWnUewGCsWvUJAMKCBftgsZzGV796JQYOHIglSxbEHXvx1ojq6mr84AfP4umnZ8HhuBu33z4NxcWPY+bM45gxw48xY7woK/spRoyYj9tu+xwDBgSxYEENGLNjyZJb4PF4eq0RR44ckV0j2tracOTIkcjYk7ajsrISr776FyxceAYDBgQxe/YhuFx+XHddAMXFE3HkyBHN615cyHGpTF0AZoE/tSS73pV5V+0JaYHw/FiZ32oBbEtWRrackHbt2qX4WTV6HSPCo+jRRlG3ZbMNJY5zE8cVk90+nCoqNkf1I5Yu8USHsbtYp1M0td0r22+1ohix7lTTjfAGBNEnM/kTEgmnxzEEjIkYoog78507d6oyHJCG2eH1ZSWy+jKl9JUz0MjECUk0oGFsPq1Y8b4g7qwih2MelZaWUWHhHIGGJwjYJIg3pwn/DhHEeDWCSHdXLx1SbJ1aI3nIhd3iDTbmqhZxqq378cc3pPWElHEmFNUYwAZgnILrYpl31TKkW9BPRHahUEj1O0oniFHe9Xq0UWpVJveMUrrILf5yFlrSfmuhi1bxjZQGcmX01iGdIcbmksXyJbLZhvZi6lrGCxFvybZs2SpZ45dEULIJMlKHlOg90douJ2dclKFFIBCg9eu3CJaJvGWgxXKcgD8TcCfl5j4R0RtaLA6JlZ1xOaCkYyFduaeMmv99giGlcmlgSBcLzy+NuT8CfcyoYf/+/YaVnamka3pALV3UTHgtdNGDlvLJCWOt7Nxksw2liopN1NLS0ouppzpeUtntx3tPK230eu+hh1bIJteLNSe324eTzTaU3O5p5HaPjYRdSsVhORUYXW9VVZUh8z8eQ2L8b30fjDELgG4ATxHRZoXvfAagmYiul9zbAN70+2IiOpPo/auuuopEfUEmEQgEYLVaDa2jo6MDPp9PcJozPs+NHtCDLsn6rYUuetBSroyOjg7BWRcYOXJk3LLTMV60QittUn1v8ODBcDgcisoH0OfmglaIY0Xv+c8Y20VEV/W639cZEmPsKvCnGg7AbwG8AeB3ws/vEFGn8NzfAFxCRGMk794K4H8A/BTAfwCYBOAZAD8ioseS1Z0tDMnr9WL06NGZbkbWwaSLPEy69IZJE3kYRZd4DCl5HInsx8MA7pP8PVe4AN6n6Ljw/xzE9JeI3mGM3QVgE4BF4GNjfBfAVuOaqz8KC2UNAr/wMOkiD5MuvWHSRB7ppkufN/smokVExOJcxyXPzSSiETLvv01ElxPRACK6mIi2EFEonX1IFZ2dnZluQlbCpIs8TLr0hkkTeaSbLn2eIZkAOM78jHIw6SIPky69YdJEHummi/kV+gFyc3Mz3YSshEkXeZh06Q2TJvJIN136vFFDJsEYawBwItPtAOAE0JjpRmQhTLrIw6RLb5g0kYdRdLmEiFyxN02G1A/AGKuUs1j5osOkizxMuvSGSRN5pJsupsjOhAkTJkxkBUyGZMKECRMmsgImQ+ofeDnTDchSmHSRh0mX3jBpIo+00sXUIZkwYcKEiayAeUIyYcKECRNZAZMhmTBhwoSJrIDJkPoYGGNrGGN/YIzVMcaIMbZZ5ft3MMY+ZYx1McZOMMY2MMZyDGpu2sAY4xhj6xhjx4W+7WGMzVH47msCLWOvHxrcbN3AGLuIMfYmY6yVMdbGGHubMXaxwnfzGGPPCWMqwBj7iDF2rdFtTgdSpIvcmCDG2BUGN9tQMMaGM8Z+JHznTqFPIxS+a+hYMRlS38MDANwA/kvti4yxmwC8BeAT8AkKXwCwAXxA2b6OpwFsBvBj8H37GMAbQkR3JWgAMD3m+oH+zdQfjDEbgL+DT155H4B7ABQD2M4YU5IrYBv4cfUkgK8CqAPwf/1g4U2VLgDwGnqPi8O6Nza9GANgHoBmAP9Q+a6xY0UuSZJ5Ze8FgBP+VZWQUHjnUwA7Yu49CeA8gKJM9y0FmrgBnAOfC0t6/28A9ip4/zUApzLdjxT6vxJACMAYyb2RAIIA1iR593LEJKQUxlY1gN9num+ZoovwLAH4Tqb7YQBdOMn/lwr9HKHgPcPHinlC6mMgorCW9xhjFwG4AsDrMT/9EkAu+FNFX8VNAC5A7769DmAiY2xk+puUVnwNwMdEVCPeIKJjAD4AcLuCd7vB5xIT3w0C+A2AmxhjA/RvbtqQCl36LbSuIUjDWDEZ0hcHlwr/7pPeFCZoJ4AJaW+RfrgU/AmpJub+fuFfJX1zM8YaGWNBxthhxtjaPqRbuxQx31XAfiTv+6UAjpGQyDLm3QvAi3f6KlKhi4hljLFzgq7l74yxL+vXvD4Hw8dKf0jQZ0IZxExbzTK/NUt+74soBNBCggxBgrOS3xPhMwC7wE+sPAB3gs8cXAxepJHtKIT8dz0LoCCFd8Xf+ypSoQvAn7D/B8BpAJcAeAzA3xljZUT0rl6N7EMwfKyYDCmDYIzNAvAXBY/uIKKZqVYn/CvnCc1k7mUMGujCkEK/iOiHMbfeYYz5AaxijP0LER1RUk6GobX/KdGuDyCVcXGP5M9/MMb+G/yJ6zsArtGhbX0Nho8VkyFlFh8CGK/gOT3SNibaxVwo+T0boJYuZwEUMMZYzCmpQPK7WvwHgFUArgKQ7Qwp3gm3API7WinOApAzg06FdtmCVOjSC0TUzhj7I4AlqTasj8LwsWIypAxCkMUeSlN1oj7lUgAfiTcF/wMbgANpakdSaKDLfgADAIxGtB5J1BNo6VuiE2W2YT96dIRSTEDyvu8HcCdjzBajG5gA3voyVi/Xl5AKXeIh3inhiwDDx4pp1PAFARGdBLAHwIKYnxaCt5z5U9obpR/+F/yEkOvbPsFwQy3uBr/wfJJi29KB3wOYxhgbJd4QNhozhN+SvZsLYK7kXQuA+QD+TETndG9t+pAKXXqBMTYIwGwAO/VqYB+D8WMl0zbx5qXuAi9Cugu8YxsB+J3w910AbJLn/gagJubdWwGEAbwEYCaA1QC6ADyX6X7pQJdnhb6sEfr2E6Gvt8U8F0UX8Mrq9wAsB/AVALcB+Jnw7k8y3S+FfbeD351WgTdn/hr4zcdRAPkxfQ0CeDLm/d+AF2EtBXAjgDcFWl6Z6b5lii4AygH8FPzGZCZ4x9oq8BufL2e6bzrQRlwzfiKsI8uEv6/L5FjJOGHMS/VAek0YQHLXCMlz7wI4LvP+14VJeQ7ASfCOsTmZ7pcOdMkBH3XihNC3vQDuknkuii7gdQz/JbzXBSAAYDeAhyFxIMz2C7xs/y0AbQDahT6NiHlmBGScqQFYATwP4IxAg50AZma6T5mkC/iNyQfg03d3A2gCf0KYkuk+6USXeGvIu5kcK2b6CRMmTJgwkRUwdUgmTJgwYSIrYDIkEyZMmDCRFTAZkgkTJkyYyAqYDMmECRMmTGQFTIZkwoQJEyayAiZDMmHChAkTWQGTIZkwYcKEiayAyZBMmDDxhQBjbB5jzC9cnYwxkvztZ4z1hVQj/RqmY6wJEya+cGCM3QXg34nImem2mOiBeUIy8YUAY2ymsCNelOm2pAup9pkxtkh4f2Y66kszJoEPEWUii2AyJBMZBWOsgDHWJSxkC1Ms6wrG2GYhorOJfgLG2JeF8bFe5rdJwm/EGLPL/P5bxliIMRabXvtKAJ8a1WYT2mAyJBOZxgIAFwA4htQTn10BYBP4wJCxeA98YMhfplhHX0J/6XOL8O9gmd8elfw/6nfG2MXggwn/nohic/WYJ6QshMmQTGQaSwBsB/BDANcxxkYbUQkRhYmoi4hCRpSfTWCM5QhJ1PpLn1uEf2MZzjDwaVj2yv0O4BHwSUi/H/PeUAAemAwp62AyJBMZA2PsSvCnmp8D+BX4MP/3x3n2AsbY44yxzwQLqVbGWCVj7GHh980AXhUe3y4R47wm/B6l32CM3SL8vSJOfR8xxhoYY7nC3wMYY+sZY/sFEWMLY+wPjLFJCvqptq6BjLHvMMZ2MsYaGWPnGGM1jLFnGWO2mHdFPc8sxthGxpgXfFqAeXI6HTVlS2ARRKEnhOf3Msa+kazfkjo1005Ai/CvHMMhAN+N/Z0xlg8+Z88/iej9mPeuBJ+KoleGU6GfUWNH8tu7kt8WKWy7CRUwU5ibyCSWAOgA8BYRdTDG/gjgPsbYk0QUFh9ijF0A4P/AJ0r7M4DXwS+6E8GLZH4M4G0AQwA8CH6BOii87o1T958B1AG4F8CL0h8YY8UApgF4kYi6BUbxvwBKwYu/fgx+8XsAwAeMsWuJqDJBPxXXJdweBn4xfQvAr8EnSrsOwOPgRU03ydTxr+Czef4UfO6favBp3WOhpex/AZ/sTkzmdj+A/2CM5RHRawn6DR1oByJqZ4wFEc1w7OC/9X+gJ929lGHdD+BC8Ll7YnElgM/INDHOPmQ6UZR5fTEvAHkAzgJ4TXLvdvAL3i0xzz4u3P+uTDmc5P+LhOdmyjw3U/htkeTec8K9CTHPPi3cv1L4e7Xw900xzw0Cn+TwXQX9VVSXcO8CALkyZYjPTpHpczUkGYMT9FlL2ScADJbcHyzcOwvAmqS+lGknPN8E4APJ3+LpaCJ6ksnNF8cE+NPPccgknwTwnwB+GKeezehJVvdazG/vSn5bpKTd5qXuMkV2JjKFrwMoAC+uE/FHAPUAFsc8uwB82uQtsYWQ5CSlAWLd94o3GGMMwEIA+4hI1DEsBL8L38UYc4oX+MX9LwCuYYxZdaoLRHSehNMSY8wiWCI6AfxVeGSqTPk/IaLOZB1OoexWSRmtAP4d/PebmaRKPWgH8GK7QUK7OQArAfwfEVWBPxECPSekrwEYDeAFktGfEdGdRLRKQZ0m0gxTZGciU1gCoAHAqRiT3L8AmMsYcxJRo3CvGLyIpUvPBhDRPsbYpwAWMMbWC8ztWvA77sckj44Hb63WkKA4J4DPdagLAMAYWw7gWwAuRW9db4FMFYcTtC3Vsg/K3Dsg/DsqSXUp005ACwCX8P/bwTOcbwl/i8xSZEirwTOpV5KUaSLLYDIkE2kHY2wkgOsBMMRfSBeCt7wTYZS8/+dCPTeAPyXcCyAE3shCBANQBWBNgnISLbhq6gJjbA14y7A/g9c5nQZwHrz+5zXIGyMlPR2lULYc7ZmS+qAf7VoAiBuXRwHsIaK/AgARhRhjnQAGC4Yy1wL4PhG1K2yjUijtswmNMBmSiUzgfvCT+wH0WFBJ8R3wJ6gfCn8fBjCeMTaAiM4lKFcL0/o1eP3OvYyxDwDcBeAvRFQneeYI+N3531MUESqpCwDuAa//uIWijTtuTqHuVMqeAOD3MffGC/8eTVKfXrRrATCQMTYVwAxIRJ8C2sCfkFaDN9SINR75NoD7AFwG4GMimqmgzotj/r5IWqTShptQDlOHZCKtEOT/iwBUEdErRPRm7AXecupLjLGrhdd+BV6UtEGmPOnC4Bf+LVTaHiJqAPAn8DqtBeD1FD+PeewXAIoQZ5fPGPPoWBfAn5oIkkWPMWYBUKGkniTQUvYyxpjUwm0weHFZC4AdSerThXZCXQy80cEpAL+J+b0VPOOcD+ANIjoZ83sdgGcB/EBhfQAwkzH2BGOsjDH2IoCRkt++whibrKIsEwpgnpBMpBtfAb/T3JbgmbfALzxLAHwC4AUAtwHYIDCpP4M3+74UwFgAs4T3PgEQBvAEY6wAvEn5MSLamaRNPwevCP8++IXtv2N+fwFAGYDnGGM3APg7+B35xQBuFNpyfZI6lNYFAG8CeAbAnxhjb4NnXHeD99NKFVrKbgSwkzH2M/BM4X7wfV+qwJBCL9q1CP/eDOBx6jGRF9EGXhQKyJh6E9HbQCR6g1Iw8Kd1aRsGC/e/AeAc+M2VCZ1gMiQT6YYYHujteA8IBgCHAXyDMbaaiAKMsa+A1x3cDd7PqAu8OOhVyXsnGWOLAawF7zOTC54BJGNI/wPehLkQwCtEFIhpTzdjbDaA5eBFXk8JP50G8E/In3I01SXgOfCL3hLwC/oZAL8F39cDMs+rgZay1wL4MoCHwUc4OAJgARH9OlllOtKuWfi3HcDLMr+Lhg3vURK/JhX4BwAb+I3PfgAPgd9QrQW/8dmnUz0mBJjpJ0yYMPGFAWNsFYA74umQGB/xY5Pw58+JaFFaGmYCgKlDMmHChAkTWQKTIZkwYcKEiayAqUMyYcJEv4dgSSheHGMsD0CYiM5ntmUmpDB1SCZMmOj3iNENidih0B/JRJpgMiQTJkyYMJEVMHVIJkyYMGEiK2AyJBMmTJgwkRUwGZIJEyZMmMgKmAzJhAkTJkxkBUyGZMKECRMmsgImQzJhwoQJE1kBkyGZMGHChImsgMmQTJgwYcJEVuD/A9MxZ7BUmTE5AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEaCAYAAABejCMwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACcD0lEQVR4nO19e3wU5bn/951sJLsbwGRv4aJyS7hYVES5BKuopF6oVYtAK6gIqIUqN6MEBEEs1VNPbbX9nR6tVNvanrZezjntqT2nN8R6owYUwi2Q5SYhbC7ktskGsrvP74+Z2cxuZndnZmd2N3G+n898ILMz7+WZ932f932ujIhgwoQJEyZMZBpcphtgwoQJEyZMACZDMmHChAkTWQKTIZkwYcKEiayAyZBMmDBhwkRWwGRIJkyYMGEiK2DJdAP6MpxOJ40YMSLTzTBhwoSJPoVdu3Y1EpEr9r7JkFLAiBEjUFlZmelmwOv1YvTo0ZluRtbBpIs8TLr0hkkTeRhFF8bYCbn7psiuH6CwsDDTTchKmHSRh0mX3jBpIo9008VkSP0AnZ2dmW5CVsKkizxMuvSGSRN5pJsuJkPqB+A48zPKwaSLPEy69IZJE3mkmy59/iswxoYzxn7EGPuIMdbJGCPG2AiF7+Yxxp5jjNUxxgJCGdca3GTdkZubm+kmZCVMusjDpEtvmDSRR7rp0ucZEoAxAOYBaAbwD5XvbgPwAIAnAXwVQB2A/2OMXaFnA42G3+83tPyOjg7s27cP+/btQ0dHh+J3jh49qvh5I5CMLtnQRin0ak99fT3effdd1NfXy5bd1NSUcj1K25ptNI4HtXMoXr/07G9sWZmgpdFrSy8QUZ++AHCS/y8FQABGKHjvcuHZ+yX3LACqAfxeSd2TJ08mo+D3+8nr9ZLf74/6vxza29t1q0uKlpYW+ta3VpLNNow4rpg4zkU221CqqNhE3d3dsmV1d3fT+vVbyOMZSx7PdPJ4xtL69Vtkn0/Wr1TR3t4uW4eaNsZrq55tT9SeePXI3Q8EAlRaWkYc5yCOG0sc56Dp02+kxx9/MlK21TqELr54PDmdV8r2Wyz36NGjtH37dvL5fFG/VVdXU3n5hqS000JjpUhGey3fRukcitevQCBA5eUbyOEYSW73lJT6G1uH2z2WSkvLyO0u0Z2WyZDq2hIPACpJbl2Wu9lXL5UMaSOA8wBsMfefAnAOwIBkZRjBkKSD0e2eRjbbULLbhycciAcPHky5rtjJtX79FrLZhhJQRsABYqybGKsjxuaS1TqJ1q/fIlvm+vVbyOmcT273GRoyhMjtPkNO5/yo5/VYrJItOt3d3fTjH/+7bB3l5RuooOAucrlOx21jvLYasTjE0szl8tKFF95CU6feEBkHTucYKi/fEPk2cv0qLS0jxm4hxmqJ44gYqyVgAlksN5PL9Tlx3DoCRtP8+d8moJAslplUWDgn8v769VvI7S6h3NxxBBQSMJQYK6QpU66nBx98mNzuYrLbJxJjRWSzraWiom5Z2vn9flq+fDU5HPMSjgO1SDZuUhlXieaQ3++nqqoqqqqqovLyDb3Gt8Mxl4YNG0eMFRHHTSWOG0s221pyOOb2oksyRilHO5uthhi7hazW1eRyecnl8qZMS6XQurYkg8mQej/7GwDVMvfnCWVcmqwMIxiSdHGy27cQY3MJ2EU22564A1HrYhiPeZSWlpHDMYcYG0NAFQFBAkLEWIgYO0PAGHI4RkTtnon4ycQvoHx54uV2nyGPZ1xkIiphWvGgdNFZv34LDRu2oNfCMXXqDcRxDmJsH3Gcj/Lz22jIkHCvNsajkbg42GxrdVlopTQrKuomu30LcdxYAkYSMIsslv3E2BlibB8xVkbDho0jh6M37VauXCv0i2dGPEPyE1BMwF6yWNYTMJeAOsrL6xK+6y1kscwkj2dcZKG1WA4Q0EhALQHzCVhFwCwChhBjxQSsJeAEMTaf7PYtUd+3paVFYGr8aZqxqgh95caBWiQbN6mOK7l7FRWbyW4fThxXTIy5CLiQrNbHqKioOzK+rdbVBMySbATOEGPzyWZbG0WXRGNW3CgVFl5CjPXQzuMJCnPuMAFOYmxKhOG53WPJ5/MZKmUw6hQWjyH1Bx2SVhSC1zvF4qzk915gjD3IGKtkjFXW1dWhsbERdXV1qK2tRXNzM7xeLwKBAA4cOIBwOIzdu3cDAHbt2gUA2L17N8LhMA4cOIBAIACv14vm5mbU1tbi+PHjeO+9D3Hddevh8XD46lfPYMCAMXjood+hs/NBLFz4c3R2jkA4HERHRweqqqpw7tw5fPjhh2hra8PJkydRX1+P+vp6nDx5Em1tbThy5AjOnTuHqqqqqHbs3LkT27b9CgsXroTN5sDs2YdQVGTHtdeuQ1ubH5df/hBmzJiB4mIbZs8+DqezCwsW7ANjL2HFiq/j7NkL8PzzP8YTTzyNXbt2IRwOY8+ePSgouASzZvlxySXNmDy5FpddVoexY3Pw5S/PxMmTJ1FVVYXXX38DCxeuRE6OB4sW7UJOjgdLlz6Cbdt+jd27d+PcuXM4cuSIbJ+effYHOHkyDLv9r5g37yUQ7UA4PAibNj0T6VtlZSVef/0NlJcvQlGRHddccxxjx+Zg/PjJsFhGYMyYL2P27Dw4HDbceedhdHS04f77awEURBydd+/ejfb2djQ1NcHh+J7QpyZMnnwOV1/9HEaN2osZM6pRVGTH1772GF5//c3Iu2I7xH/F7yTXp0OHDmHo0BLcfHMbgO9h/vwLEA6/g1Wr7gHwKh5+uAVEeXjwwW4MGPAjXHPNNAwevBHXXRfAmDGNmDQpjClTNuIf/9iJW2+9DU7nhViwYD84LoxHHqkE4MSqVWcRDL6BFStWguNc2Lr1IzidF2L27KcxcmQHrrxyMnbv3osxY57EDTd0Y8gQC+bPb0Ne3r/ioYcGAPgJVq16AER/wqpVRQB+jvvvX43c3P/GrFn7cdFFVkyb9mV8//sv4v33mzB16su4+OJpuPPOXFgsHfja1z4FACxZciqKxnv27EEwGMShQ4fg9/tx/PjxuPNpz549ePXV/8DixY9EjZvFix/Bq6/+Bp988gnefvt/MGtWBUaNugCTJ9fiiitCKC7ejOrqI2hoaMChQ4cQDAaxZ8+eXt9p//79vb7Tj3707/j738+guPi/MHPmn3HxxR/jzjsfQW7uh7j99tcAAIsW7URX1x+walUFGBuCBx/cA6vVgXnzHkNBwfu45ppr8b3v/QA7d7Zg8uS3MHLkH3H99b/BG28cw09/+irC4TB27dqF6667FcFgEM3NF+KRRx4Cxw3HHXccRih0CrfeWofiYoYZM2bhqqv+DePH/wHXXJODAQPsqKjYhOuvvx8bNz6NJ554Gp988onisZdsjRDpouY7KV334kKOS/XVC+pOSH8B8JHM/TKhjC8nK0PvE5LX6yWPZ3pEbAOMEnapZwgICiKz+WSzjSKv16tbXUVFIXK7uyP/clwJOZ1VxHElkhMSEbBZ2GVXEcf5yOU6HbUDVXJCktYbe3k80xP2S+kJTK4Oj8cvnDz+SYyNJcbOCCeJYKQvsbv32HJ42tQL700nl8uruO3J+uRyeYnjxgrfuIaA6QLdgwT4CAgRcISAEmLsDBUVhST9C5PN9iUCBhPwuTBWQsRYu3BC+iMBUwkIC5e0zBK64IIC4QTgE8aa9LnpBNQQMJUYqxZOTuOIMX+EBm73GXK7S4TrTITWPI15+vJjS/sJKdm42b59u+T3MOXntxHH+YTvVUzLlq1SLRJ2u0uIsSqhD0QcFxb6X0KMlZDH4yeXy0uMTSGgTvKceE0VdErFCcdsefkGYqyMGKuVfLODBLQI36lbqLeIgA3EcUTAKQIKyems0k0kmk7APCH1wlnIn4IKJL+nFR6PB8BZhEI+MJYPoBXA8wDcAADGPACeR1dXG/Lz8yPvibsQtXURnUVrqxf19Y1obGxGfX0j/P7jIDoLxmywWhcCWA/gCIA2AL8CsAWABzabFRbLEHDcC9i27dfo6OiA3W7HkiULEA6vRCjkAwCEQj6EwyuxZMndsNvtUX0UQRRGd3ctiM4Kv8vD5/MBKEROTvQz/N8Fwu89dLzvvg/EGtDe7kU4PAjARSC6A0QrQHQGQA6IGhAMroi0UUojaVt5nwwC0WkAzeA4T6SPQHPCtgPxraRuu20Wurq+hXB4MIhcIHIAaATgA28IywCEhf83AWhEOByOvN/aehSBQCNyci4D8CAAH4gAolYAuQC+LykvjFWrdgKwAjgj3B8Cfi8WBL8XE8vm+8XX3wygCIwVARgMor0QBQzh8ErMmXMrGHMgJ8cDjrPDal0AYCWIGgEwBIN1UeNALeTGDdBD+wkTJkR+b2/3o7OzG4ADRGEQMfzud59j06Zn4pYfO4d8Ph/C4QuFOZcj3GVC/wsAWBEOi205CYulGfx8DQEAiE6D6AS+/vXZYMwZd8weO3YMr776GxA9DyIPiKwAFoA3/P0cPO3rAKwBcC+AN0HUBiAPwFAwZouUJ52LekHL2pIKvsgMaT+AkUz8oj2YAN7YoSbdDYpe0I8DGAp+4AXBGL8oMZYHq3VIlDnm5MmTNdU1ZszFCAQeAVEQgAtEQQQCKzB0qBNE62GzLYbdPhnALAAThfovRH5+HgYO5BliLDN46ql1ePDBS8HYTITDpWBsJh588FI89dQ6mT6eQXt7O3y+A2hqWgK/vx3f/e7zCAaDsm1OtiiJDEGs45VXfiRZoILgJ3gHGHsKwGgQzQTRNDA2E0uWjIu0Uf57+MAYh7y8dgBLMWDAbSAaoGihDQaDeOKJpzF69GSUli7E6NGTsW7dZqxduwkezzj87Gd/Rnt7JXjGfxD88JsLYBX4xYgANIDfHIwDsBpEDULZdQgElsFqvQ9O55+RmxsEb0A6HsBlyMk5A6v1CvCL5b0ADuKHP/yS8PcSMBbG4MF/hs12D/hFrxlAi1DvKvDeEBUA7gRRAETHwO/VNiAv7zwYuwVz5w7Bhg2PRX2bgQPXwWa7FMC1AGaA426MGgdqkWyz43a7sWTJAoRCK9DRcQI802wEsBI220Lk5Py/hIt17BzyeDzguBYQ+SAyGR71Qv9PgbFvguNmY8qUCcjPL8eAAbUAmkC0H8AiTJ8+Ec899x0kGrMAEAhYATiFX3LAf+dLAdwIoFT4dzz4zeBgAIcA1IHjgpFNEdB7LuoBLWtLSpA7NvXVC+pEdlcIz94nuWcBvyL8QUl9RlrZ8eICFwF7BdFHPXGcj2y2ml5ij8rKStX1iCIJm20tcdw44rjpxHHjyGZbSy5XiWDaO06wLCuh++57kAoLR0cs0+KJy6Tlx1O2in2024cTY+OJsRKy27eQy3WKHI45tGzZqrhiHaWK6+7ubnrllVfJ7R4riKNKKDe3jBibR8BpAs4T8DEBM2jq1BsUmLGLtBgrWFQ5iONKiOOcVFpaRoFAIC6t5dpstU4ii+VmYuwgcVxQEMlcQcBXBNFcl2BQ4CHgSwSMI+AxAq6nq6+eSU5nsWB9V0w226goJbvb7aPCwu1UUPAlcjqnCCLgRrJYvkyAk1atepKAQho//ipyuaYKYtvzlJv7hCAuGku8lV0RAW4Cygk4J4gDbyaLxUFr1qynb31rZZS1IW8ME2uBlvh7qkHst/B4xvWyslu+fDVxnDsynu32LRHaJBKrys2h9eu3kNV6W+Qb8cYKvJVpefmGiAm82z2W7PaJxHFOstlGkcPBW0SK7ZL7/iJdjh49ShznEL55kyAmDQu0dlNe3nKy2+uI45oEkd44cjiOEGNlEcOaZHMxFWhZW5QA/dnKDsBdwvUTgcksE/6+Tvj9EvDyiCdj3vsN+G3KUvDbkDcBdAG4Ukm9RvshieafLtdpcru7e+lsUoFUJi/Kwj0ef9TEjWUqqVgxyfXP7S4mh2MneTz+iIUZY8XEccXkdpck8W+RX5RiUVVVRQ7HpEgd/KJbIuhG3JSX961e5rnx2uv1eiPWaKL5bTITXDm9l8fjFywY9wp6B1Ffc4qAIQQ4BZ1PicAQLiHGriLGimjYsHGCrmYKORwjacWKx8ntlterSfU6UmZ14YVvk8s1hnw+X6RtvM6liRhrJWAnARcTUEg5Od+O2rBYreWRDYuc+XNpaZnib6MUanzAYsdVKot1rJUdx7mj/PB6m+ufpoKCu6i8fEOvcsQxG+vK4XSOIYvFI2yUagSd0T7iLRuHkcNxXNAR1ghMaBR5POME5j9XV7P6ZNDT966/MySKc70r/D5C+HtzzHtW8EqaMwIj2glgptJ6jWRIRMoX371796ouW6mBgJb2KEGskppnRvMjp0Gn81Qvgwm1jql79+6NMasOEcf5IouuqJhWsliJvihSBbXIyHlmLv++nDK+RxHuI44LSxhSWGCUl1Fh4d/Jat1LHOckl2syORyjaOrUG2QXodLSsrgbBblNxLe//WyUqbTDMS+ivBdNlq3WVYJPjY/c7raoDYvbPU1Q1suPHb1MkbX6FandOPn9fvrHP/6R0NG2qqqKdu7cSVVVVRFndbXzp7ePUZhstiME3EDADGEDMpUYKyardRVZrUPI7R4bmWviqczv9+s6FxNh7969hjg592uGlKnLaIYkItni29XVpalcrScePXZK0gmdzCpLSWQAOYh0EfvpdJ4ijquPLLqiH00icY50MjqdU4RoFZvIbt8sREOYLviFjKLq6uqE/Yx/QiJiLCSIEnkLLqezhgoK7qLly1fT9u3b6ejRo3EXQLd7bJSIVbo4yS1cTz65NamYy+1uEb7JPnK7u6Pq48WFU5JaSqY6TrSOT6WLtfTbjh59Q9yxJbcgL1u2SrW1aOxYEE+lvLiuiIA9xNguslr3RvppRFQKNejq6tJVMiLCZEh9mCElw+HDhzW9l65dVjyIA93h2CkshkHiuCbBmVI8OU2kgoLZmiaDSJcevVyPPkmqW0i0q5VOxqKiEDFWJeh6bouYjvOy/bJeohq5MmJ1SMAB4jg+CgZwFwHjKDf3ImLMKfxbKOglRkd0RUpFrFJIf4sdL/HEXDbbWmKsrFdEC3GDEO90oMQRNBm0nEAS9TnZd7n33sNxx5b0OY/HTw7HTiosvJ3s9uGq2hfrasGbpYsi24nE2CjhVOqM0kFlEvv27Uv5O8jBZEj9mCG1tram9L7Ru6x4kBpwyHn2u1ynBZGVV9NkiKWL3++nZctWkcMxRxGDk1sU7fY6AkYT74sVijBROWOT2H5KDSOmT7+RbLYhBLiE8hxksw2lyZOvpYEDr6O8vI8liuz5ZLU+RsCNZLHMjDmZ8R77ar6d3HiRV7zH1wkl2jXH+628fIPicZaKv5oSxH7byZNbZcdWj5/YqUgUDY6bTowVk8XiUBUeSVqn1KeN39iMI7fbJ/h1TUm5f3ph//79hnyHeAzpi2z23W/Q0tKS0vt2ux2jRo3S5B+SCiwWC7Zu3YijR3fjW99aiMLCp2GzdQJgCIV8CAZXIC9vECyWUVHvKTVvjaWL3W7Hiy8+h4ceujyuWboUcn5PNlsHABd4M/kmAE2w2XIxePCouG0S++n1VuLDD1/HvffOxZEjTuTnfwqP5xgKC1/HhRd+GRMmlODTT/fD7+9CV9c9CId/BN4H7QWcO/cHWCzjEQxaQPQ3AB+C6O8IBPZizJiLVX07ufEiZ67/0EMTsWPHO5F2e72V2Lp1IywWS1zz/scfX4Ft234FjnshQrecHDc6O7fi+ef/HdOnfxOjR0/GE088Hde8H1Bu4q8Vsd/24otbhLZGjy3xuc7On6Gzcz+IdgD4EMA/EAxeiUsuqVM0loBo03XebJ/A+7SthNV6N3Jy3GDMDsbaNPdP74jgfPoJ475DL8hxKfPqWyek2JhyRsKo05Sc+JA3qS3RLC5IRBelgS7l9T/FxFgVuVznIxETlLYpniiKt6IqIuCfkogA8wnYIuyip0RiCyZzA0iGVOmS6Hm5k42oK+G4qZHIDkrErkboLqTtluowr7vuM1kDF1GcyX9zMboHCQYgVaQ2npx0nCsJVKsURkVX9/l8pg6pr1xfJIZkZDoBKfQ0NdeDLvH0P1brbZraJLdg91j/TSXGdgp+SUEC6gT/Iy8xNkoIrOkjjydIYqgnLaITI8dLLMPt6Vstcdw4iaUeb4whWq3JwWgdZ0XFJrJaJxFjxTRp0jcF67ZJVFGxKeq5ZctWEWPjieO6JVeTEPxUe8ionlQeqffPKObt8/kM+Q4mQ+rHDOnEiROG16HFlFZf01/1k0EPusjVX1GxiSoqNmtqk+iQ7HSekpyuuoXo4+MkTpDdxMeam0rAbLJaVwu76ZqUlctGjxfpWHG5zguRyqVWjWKsuWLBRyzx5saoU3lFxWbB8bWKbrhhHzFWRVbrbVRRsTnqucbGRsrNdROwV/ATqqPc3EZyuep0MbBItX89eq7TURsVPRxlpWPF9EPK8itbGFKqRg3JoMbiSUuyOaVtUPuunnSRq19tm0Ta2GxDibGbIkYcLtdpied9T2BQPrBtIVmtI0jMwySXekLtLtjo8RLrUAoUEHAP2WyfR/rH2MEoPzC5fhhpbBPrnzZpUlPcALB8xIZJxNhcYqxOENcdJKv1NhUm6NF5rfSULFRXVwuRInwRUa5oHJSqAYhRYyUeQzKNGvoB9IxdFb/85EFNAWDTpmfw8su88pfjPgTRDrz00n5cd92tUbHckim1Y6HF8EJPusjVr7ZNIm3s9n/CZpsBYA46Oqais3MKpk8HrNajCIXqMXDgQDgcIRQUPIWVKx/Avn1/w9Gju/DOO29g3rwhAK5VpESPB5/PZ2g6bIvFAo7jMGDA1bjgghsB2ABUorNzJhobN8Lv9wJ4EjbbQnCcvVdgULnYf2rHSzJIxzRjHCZObAJjXK8x3dHRgW3bfoX8/D/AZpsIxq4H8GUAt4OxXXj88RUJ69m06Rm89NJ+tLf/EY2N/42mpv/C97+/E9dccxMOHz6sC/1/+tNforOzAWJMSsCBzs5utLYeRaqGB0avLb0gx6XMq2+dkLQ6xiqF0hNSMoW9aL6drlD5RtNFDeIZSDgcO8ntLpH47iRybhWz1pbQ8uWrqaWlRXU7uru76ckntxqqCxT7yvsxzRdSarQJJ74yAgqi/MBizYiNNGaIbaNYR3Fxl+yYjtX5SX3AlKZLsVr3EmO7iLFWwWDlFAEeslpHpEz/3rRW5hunFEbNIZgnpP6Lw4cPG1q+krQSgPxJiiiMrq6BYOySyD2jQuXHwki6qD1hyNGG4+y44IIpYMyBpqamKNNwqYl17KkTeA+/+91pfO97L6pu96ZNz6CpKSfqBPvyy/sTpmZQC5/PB6LB6Or6LwAvgLEiMDYQHDcBwA/AGAebbQEYs0TeEc2I8/PzZczG9R8vsWP65psPy47p3ilI7LBYRoHIj2Snj9raWrS3dyMQmAOih0E0BeHw0+BPMSPQ1cUhHH4nJfqL42rQoO/AZuPN8IFSMHYjrFYvHnjgHk3lijB6bYmFyZD6ASZOnGh4HcnSSgDyviPhcBi8z0Wr4aHyY2EEXbSKk9SkzpCKAUWRkR4LtFjWG28sMnSx93g8CIUaAIj5hEQQOM4Fq3UogsEVspsbv98PpeLhVCEd07/73UOyY1rpZkwOP/3pLxEIjAbwd/C+S+8COABgI/j0H3zKiVToL46rcLgJgwZthMtVCYfjdTgcf8TAgRdg2LBhqsuUIh1rixQmQ+oHSEcSrVjnTukOXoTc5OWZ0Wrk5d0OjuuZvIY51klgBF3kdGSxO1y501MsbcSkhKFQ78SAUqjR3yWDWBafSjy1shLBbrfj/vsXgOgEeMdPgM8p1IoBA3ywWjtwzz3Rm5tFi4px333zhcST6XHElI7p3/72GdkxDSjbjMWio6MDv/zlG7Ba/w18DOcQAD7BJvALALeAsTZwnCcl+seOK46zgzE7iNZrToYoRboT9GVcD9OXr2zRIWUT5MykY0Plu1xeKiiYnbJ8O91IpktLFsMtWToDLXWqsUDTs6xk6O7uptLSMiE19z5irJYsFt503W6fSB4PHxB2//79vYLnZiK1ghKosfrr0T2FKTe3UfApqxfMxr9EwC0RM/hU6Z/pmJRaANPsu/8ypFSTaBlhXistUxrc1GYbRRznJLt9IrndxjjXitA7uViy+GrLl69Oqozn0z3MiQQyVbLY6hmVff36LVRR8UPDFvvY787nTeKTCPKm7TU0ZEg4Uu/UqTdQQcFdUQFcHY75huRVSgS9x0o08w+T3d5KjJ2RmPKvTjk6g1ydes9jM0FfH7qyhSFpRbqiL4goL9/Qa/HJhp2vUsQ7Ybhcp8nhGE0uV3HC04fP5yOHY6TqYLFqd8CJvqtRu+lEdfp8PnI6x8RkGxZzARUK4ZJ6fGf0zquUKcRuJMQEflOn3tCnTjNGwGRI/ZghffbZZ5reS4d5rYh0iotEaKVLIkTTrCeTZ17eRcRxxVHRyqWnp2XLVpHTOUaIFj22l9mzxzOdqqqqdMl9k+y7fvbZZ7rvphPVGS++HWONQv4nb6/UI3pE9FYDI8ZKIuafqQj7amEEXYjiMyTG/2ZCC6666iqqrKzMdDMQDAZ7KWKToaOjA6NHTwbRjiiFeSjkA2Mz4fVWqlaIdnR0wOfzwePx9Hr36NGjKC1dKJgtRyMcLsWHH76OUaNG9fotFcTSJVH71JS5adMz2Lbt1/D7c9HZ2QCr9T7k569DQ8PVAH4Pu30YBg4cCICnZ0fHVcjLmwqO+5Fgch0EsAY226UYNGgjQqEz6Oi4Gna7FYw5AZzFkiUL8NRT6wz5rgMGDFBdbip17t27A5dddm3kd6Iw6usbQdQNoisA7ATHjQKv+G+CwxECx92gaQxqhZY5pBR6jLtMwSi6MMZ2EdFVsfdNK7t+gJqaGtXv6Gm9pcQU2uh0AnIQ6aKn579ombV37w7k5fnhdH6AwYOfBWMW5OV9FcBGdHScAFEYoZAPodAKEIWRk/P/YLEMgc1mBWN5AJ5HIPBrBINH0d7+IMJhF4B/pOwbpOS7ahkvifyuktXp9/ujLMF6XAEeRW7uJDC2HkQ+ADkgakAwmNjy0AhooYlSyEX0MDJShp4wki5yMBlSP8Dw4cNVv6Mng1BiCp2KP4dWiHRR0j618Pv9sFiKkJNzMdrankZDw2R0dX0Eog9BNBPB4DQwNhPz5w9Dfv7FkcV64MB82Gy5glNoGOHwLDC2C/n5f9DFN0jJd1UzXvTabEhNp4Evg7GZsFpHoLDw9xKHTp5mS5aMUx0OKVVomUNaoHZzlGnGlS66RCAnxzOvvqVDOnbsmKb3tFh8xUJb4NX0KHSPHTtmmO4qUcgW4AZauvTb5Pf7ExpCOJ3FtHPnzoSWe2r0KKJegrdsi69DUjNelOoZlT4Xr42ZdgXQOofUQimd0m1wFA9G0QWmUUP/ZUgNDQ2q3+ntE+NK6hMjBy2pptOl0G1oaEjavmSGBIlQXr6BGCsScv1Q3HTmiRYhPRhm71h3vC+P2z1WlvErHS9GbjZ6p3UvoWXLVmmKz6cHtMwhtVBDz3QaHCWCUXSJx5BMkV0/QHd3t+p3Nm16Bq+8chB2eyXc7kMoLPwUVus14LgcnDt3TrGYQK3oL50K3u7u7rjtCwZr0d5+AjfeOAfTpy/AiBFX4LHHNqrSKz3wwD2w2VyC+K0B8dKZx3r6A9di7twhePzxFbqIMnvHutuBw4cLce+9c/Hhh69j794dWLJkAc6dOxehixKo0TMqieQhhfh8dfXHmDNnGgDg7bd3YuzYqXjssY26RcIWkUz0pWUOqUUsPXk9YxAc54JchPFUw0XpIe5LB12iIMelzKtvnZBOnTql6vn4O7U6stuHk9tdrEpMoGQ3lwkRhEiXRFlfbbYaIaPpPmKsjEpLyxS3SW1itJaWFlq+fDW53SVRNAgEAppFmcl23bFRENav36I4QV86TPXjmdHbbKN0GSNKx53aOaQFPfSsi+S84rh6YqyK7PbhkdOhFqmDFHrONaPoAlNk138Z0tmzZ1U9H2/A874h48nh2KlKTKBEXJMJEYRIFznxkN0+XGBGTYKoTQzZX6RKj6GmX8me1SLKTLR42e0TqaBgdq/6tm59zpD+qUUsw+PHX1Mk3bnL5U25LqXtVzuHUmkPn6X2oJDo7wwxNpes1klR4yCVjYCe38woupgMqR8zpJqaGlXPyw34oqIQMVYVyeKpZTccb0HNhFMsUW+6iO2rqqoit3uasEMNCvof8ZpKDsco1Vlgk+lCjDaukDOa4DinbFSIb3xjseb+6WmIImWm/Pg7Q8B5AoIETCWbbQ+53crThMdCDc3VziGtaGlpETIGlxDHTRfS1m8hl+uUYr1jIug9zoyiSzyGZOqQ+gGGDh2q6nk5vUUwWAegPJLFU4Qav6R4GVSV6iL0NnGNpYvYvpEjRyIcbgTvC5MT+Z33hWlFTo5TsR9WIl2I1JxXqf5ALeLpoILBFcjLGwSLJdrZOCfHg88+O6W6f3K6oVS/l1S/19bWDiIGwAKgEUArAoECdHbaoZU+anRgaueQVjQ1NWHgwEvgdu+Gw/E6XK5KDBq0ERbLMCTSOyrNDqynfyGQPrqIMBlSP8CxY8dUvxM74DnuRlitVbDZFkc9p4fjajLDB4fDYUjK6nh0sdvtWLToGwBWQ0yPwDOjlcjLux2Mtanu7/e+9yJ+97vTAN6T9XXqocEZtLe3o76+EY2NzfD5DsDv/xwOh0NzP+UWryVLxiE/3yJL8+uuG6+6f9LNhl6OxiIzDYVWIBD4HAABqAOwEsDdYGyo4GR8VtP4U2Nwo2UOaYHYJiI/LJZRkc1fbJvUGonElq+XA3q66BKB3LHJvPqWyC4UCml+VypmS0X2nEz/kahsvfUUYlva2triPtOTHqGIOG4qcdw4stnWksMxV3W9SsUkSvQHqSD2Gxil/9Gz3O7ublq+fDVxnJuAiQQUEbCWGOsW6HMTLV++2vC2pjKHYpHKXNADepavJ12kgKlD6r8MadeuXbqUo0VfoNSiJ17ZLS0tusm8Y9vy+OMbkvrClJdvIIdjFLndUzTrR5RaRSnVH+iFeDRPJaWAEbown89HhYWXUEHBX8lm20AcN444bjoxVkI229CUfJOUjmk95lCqc0GrXi6WAepZvl5rSyxMhtSPGZLeUGPtpXY3Flt2qiauqbRFS3/jva9kkRb76vH4yeXyRhmPGBndWk9HZD2/l3QBt9snEmNFZLOtJbe7hRyOneRwzNHt1JAOZ+xU54JaJGOA2RxR3GRI/ZghGZVEKxn02C3rteOWK2fdukrDLflEiIuRy+WNXNJoDF6vl3w+ny70SnWRyZYTUmIfpPTmCdIjyWW6LUnT4UqR7gR9plFDP8DkyZMzUq8eFj16BV2Va8trr03WbF2kFhs3PoaSkrNoapqKpqZb0dQ0FcXFTQgGuyPK/8suuxajR1+MUOgR1X3VM2J5KuMl3vcKhb6Nr3/9ZsXl9I5GwDB48Gg4nT+HzZaDvXt3KFLi64VU55De1m3JoFc0h2RI99piMqR+gN27d2ekXr0sepSauCYyM5Zry7337jY0vYUUTz/9HA4fLoTDsRdO5z44HHvx2WdW/OhH/wNplPHq6kKMHdui2pxXz4jlqY4X6fcKhabD778SXV078fbbOxUzyngLuMUyBDk5Tvj9/pTaqBap0iTd6VXSxQDTvrbIHZvMq2+J7IyyhImFnLhIT7FBPHGUUmVxbFuKiurSEpBSi6OxmvTceouD9Bovfr+fli9fTQ7HvIw7cKYKPWiSzmgk6aJfuq3szBNSP8ChQ4cMLT8YDOKxxzZixIgrMH36gqhdsFYHPjnEc6xVejqIbcvttz+ruS1qILdbDYfDYMwDxhwIh3t2q9KkdXJ9VVq+tCy1u2E9x8tbb72DnJwXVYuNMpEfKxH0oImecyEZ0kU/o9eWXpDjUubVt05InZ2dhpXd469TRoztI47zkc1WQw5H9M7PKIseLTtBsS2NjY26tkVNG/UIxZSo/FR2w3qNF/2CgKYnP1Yi6DmH0mXdlg76GbW2wDwh9V+cPn3asLLXrXsKH31UBeA1MHYpAAe6ugoQCGyN2gXHO92kikSnA6JB+OSTT3rtxMW2tLS06NqWeJDbrYbDDcjLW4+8PDuIeH2I1h2s3rthvcZLqnqTeNEI1KQ/0Qt6ziGj5kIstEZzUAMj1xY59AuGxBi7iDH2JmOslTHWxhh7mzF2scJ3Kc51hcHN1g2FhYWGlNvR0YFXX/0VGLsEjIkxrXIADEZX10AQXWi49ZrcokcURGtrBRobj2L+/HVxFelG0UUOcuKalSsnY+XKr+kiwtFDHCQahVitVtX1y0EvRiku4AMGDNA1hJSaWHuJxkqm04gng5EMMJ1zCEDfF9kBsAE4AmAfgDsA3A6gCoAXgF3B+wTgVQDTYi5bsnezRWRnVM4Sr9dLbvcU4rixkRTd4sXYPnI6i9OifI5VFvNpw28hm60mofI4HTluYiEnrtFThKOlrFijkNmz5+om2tFTbKSXUYCWfEByY0VNOdnshJoKzHxI6hnSSgAhAGMk90YCCAJYo+B9AvAdLXVnC0M6ffq06neUTCBRd8EzgPkRpsTnDSpTlTdISb3JrezGkcs1mRhzkM12hIYMCSfUp2ihSyZg9GIWu9CXlR3Q3forXdEulEALY5MbK9maeDKdMGoO9WeG9DcAH8jc3wFgh4L3+zxDUpP3Xu0EWr9+Czkcc8lmWyvEGJtKjBWpyqyarF6538rLN1B1dXVUfK7y8g1UUHAJcVwJcZyP8vPbophSrCJdDV0ygXQsZnIL/Ze/3JAx8+p4qKqqIqdzSiTrrtaQRFoZW+xYURMwN5VTXbafrIyaQ/EYUn/QIV0KXlwXi/0AJigsYxlj7BxjrJMx9nfG2Jf1a57xUONEqNbB8qmn1uGhhyZi4MD/htM5CAUFDXj00aXYseMdVcrTRPVKf2PsPbS334Hvf/8VXHnlXRE9wsaNW/Haa0dgsfwdAANREJ2d3Whv7zEYiFWkp9u5Ui30dHaNBzmjkKIif9oiWCSDGIHixhu/jrNnj8HnO4D29nbw+0T1jqVaTeRjx4qSclKJlqBn5A0jke451B8YUiGAZpn7ZwEUKHj/dQDLAcwC8CAAB4C/M8Zmyj3MGHuQMVbJGKusq6tDY2Mj6urqUFtbi+bmZni9XgQCARw4cADhcDji6bxr1y4AvOdzOBzGgQMHEAgE4PV60dzcjNraWojlHT9+HH6/H4cOHUIwGMSePXuiyhD/raqqwrlz59DR0YG2tjacPHkS9fX1qK+vx8mTJ9HW1oYjR47g3LlzqKqqQkdHB4iC4LgXsGTJKQDAwoVnYLU+D5/Ph4aGBhw/fjyqT+3t7Vi8+G7s3/8+/vM/f4Bjxz7DN795JywWi+I+nTp1CocPH0FR0bP42teaMWBAEAsXngHHvYBwOIhXXnkdS5c+gpwcD26//TXk5tbhjjv+By7Xf2Pq1N/h/ffr8e6772PGjA24+GIn5s5dhUGD1mHRosPo7AzgvvveRzi8Elu3roXdbseePXsQDAbR1tYGv9/fq0+Z+k5HjhyJfKeTJ0/iww//iRkzNuCii6woKzuCwYMvxDe+sRrbtv0aO3fujCpD7NOhQ4dU9cnj8eD++8sQCvlw7727wXFhXHRRCwYNOonrrx+PvLw83fqUaOzJlbFnzx489dS/oK6Owe3+M269dRMmTPh3TJhQjQkTvLjoIi+uv/7/Ydmy+3DixAlF3+ncuXMYMcKGSZP247LL6jBmTCOuueY4HI7j+OpXr4TD4ZDtk9PpjOqT3W7HtGkjMHZsNcaPr8e0aScxdGgbZs36FPn559HS0gKfz4fFi+9FTo4HixbxZX3zm3tgsznw1a9+FSdPnoz7nbZu/Vc0NlrA2LtYtOjHINqBUGggNm16xvCxp+Y7OZ1OzWMv0XeKC7ljU1+6AJwH8IzM/a0AghrKGwjgBID3kz2bLSK7gwcPKnpOz0jNapCoXodjEjmdU4Q2+GMMKOrJ7e4mh2MncVxxRJxTVNRNdvsWQYRYQk5nsayoSyldMoF0fotYsdLixZVpiWCRDLFiMfG78uk5isnt1ibC1CJGkxsrycrRKh7MtigViWDUHEI/Ftk1gz8lxaIA8ienhCCidgB/BHB1iu1KG8aMGaPouXTH21JSb05OBziuRTAX5sUkjHnA26kQOI6DxXIpgBYhzTrAmAWDBm2Ew/FHFBQEsX//+7L+F0rpkgmk81vEmoz/9a+L0xLBIhlixWLid3W7d6OgIB9/+9ubmvxqtJjIy42VZOVoNXtPdyDWVJDuOdQfGNJ+8HqkWEwAcEBjmQyiELsPYP/+/Yqey1S4lkT1Ll26EEuXLkQ4vFJ4+iz4tOKtsNmsYIwDkR95ebkgWhP1PtF6PPTQIrjdbtl6ldIlE0jnt4h1oHzrrW1pjaQdD/GYMp/eO4CRI0dqKleLw6jcWFFSjhbml6mNoRakfQ7JHZv60gVgFXgT71GSeyMAdAN4VEN5gwCchAILvWwR2alBpsK1JKpX+pvNNkrIiVNDQ4aEI2KSiopNWRNmRi9kU+icTIG34pxDDsdO8nj8hgYkNRJqreVixYEu12kqKLiLVq5cm9VWd3oB/djs2w6gBrwz7O0AvgZgD4CjAPIlz10iMK4nJffKAfwUwN0AZgK4TyjnPIAvJ6s7WxiSliRamTI3TeaHVF1dTeXlG+Iu0mrabVRyMb1pl+5vkamEjrHo7u6miorNZLcPJ44rJo5zkc02lCoqNqWdKaebJtLNCJ8t10m5uRcRY4Vks40it7skKzYn6U7Ql3GGoscF4GIAbwFoA9AO4L8AjIh5ZgR4Mdxmyb3bAHwAoFE4UTUB+D2AKUrqzRaG1B+Rjf4Z2eIEmY200QLpKaGoKERO5ylyOOb1udNRKuB962aT1bqXOK5JcDqfTzbb2j55UlSKfs2QMnVlC0NSu4vpLwtaMui9u0tnvhs56MUQjTwNKB1bqVqa6T2GM3FqFGngcp0mjvMRxwWFSChniOPGkcvlzbjVnZnC3IRqKE0z3Fec8fSCnumXRSdIxr4Log6Ewx2GpIxOBL0caY1IS612bEktzYjCCIWCIAontTQzagynO1U30EMDxlzg7ahyAECwMhVdKDNrdWemMDehGqJDG5A4MnE6IgNkE6R0kUJL9GbeSbgbTU23oqlpIRoaJqOt7WlwnAPpWDRSiQoQi3h0SQVqx5bH4wHRWbS2elFf34jGxmbU1zeitdWLRJZmRo1hI2iSDKK1HVEDeG1CCABAxFvb8cis1V266WIypH6AkpKSpDtHPRe0voKSkpKov1PZXf/0p79EIDAaRH8HwC+EnZ370da2AelYNPT0XYmlS6rQMrbsdjvGjLkYgcAjIAoCcIEoiEDgEYwefZGs2buRY1hvmiiBaPpPtBp5ee0AWsG7PKxEXt7tIFqfkey5UqSbLiZD6gc4efJk0p1jX3LG0wsnT56M+lvr7rqjowO//OUbsFp/AsbyAIQEscrzCAR+jnvuuSulRUPJiU1P35VYuqQKLWOro6MDNTUnYLVeBsZuBFAKxm6E1XoZampOytLCyDGsN02UQvRjGjjwq7BaZ4Kxy2G1foL8/P/KCufldNPFZEj9AIMGDUq6c4xd0MLhDgSDRxEMHkWmxQJGQdqnVHbX4kI4ePAo2Gy54I0xG8CYBTabCw88cI+m9qk5senpSKv3t9bCLH0+HxhzYPDgZ+FyVcLheB0uVyUGD34WjBXKMhcjHUr1polSsbDU+Xbv3v9CXd1+VFX9BUeP7soi5+X0wWRI/QCnTp1Csp2juKCFQo+gtbUCDQ2T0dR0NxobZ2D06IswYMCAjLTdSEhTmKeyu+5ZCOsxcOBAuN1OOJ0FcDhCyM/vxrBhw2TfS7YoaYm8nmrWWAC6p3bXwiylzIXj7LBYRoHj7AmZi5HRLfSiiVaxsN1uh8fjgd/vh8fjSdqXdGWx1XusJIWc6Z159S2z7xMnTigyoe3u7qbS0jJirIwY20cc5yObrYYcjv7p7+Dz+SL/T9XMWI3JtxLz7FTak6rJs5QuekFL1AktZvRGRbfQiyap9Wksud1TyOEYSeXlG2T7lG5fOCPGClF8s++ML+p9+coWhuTz+RRNBKnfg9vdHYmenY5FMBOInUyp+BGpWQjjhYWRZtjNVOR1IuMWGSJ14yQV5qL3eNSDJlo3GdFJMMcmTIKZbl84kyH1oStbGNKJEycUTW4ti2C2RCfQghMnTkT9rcfuOtlCGL0ohSk/v404ziecSJ2Rna+RKQiStTGWLplGNmx29KCJmvkl9tnn85HHM5ZstrXE2PxI6hU+YkNZ1CYmE2krjBorJkPqxwzpzJkzkcFdVVVFVVVVcWPFqR3QmY5OkApaW1tl7xu5AEoXJZ4ZNUU88DluKhUUzI7QTm/aKt08xKPLFxl60ETJ/Ir9Rk7nGLLZRhJjJZI8YCQwpX3kdBZHxmkmTtVGjZV4DMk0aujDEBWojz32JC677A4MGTIBU6fejhtvnIPvfvf5XopUtUrhvu67FM9QwW63Y9SoUYb4d4jK+mCwDp2dAQCDAeSAd3ZshcXyYoR2ehkpiFBqJNEfTfxThR40UTK/Yr8RY+8hEBgDom7BlUBECIy5wHGOSNsykbYi7WNFjkuZV984IYk7bI/nkOLAjGrEVpnUc+iBrq6ujNS7fv0WKii4SxDT8bHJGJtPdvuWhOKbVMV0Sk+/maJLNkMPmiSLVh/vG9lsRwgoJOCIcDoKEsc1kc1W0+vbpVtiYdRYgSmyyx6GpOcC5HKdpiVLdqoOzKikDX0p1bIc9u7dm5F6u7u7qbx8A3GckzhuKnHcOLLbt1BRUbdhtFOzecgUXbIZqdBETlRaXr6Bqquro75z/G8UptzcsQTMICCx9Wu6c2gZNVZMhpQFDElPAwFxcLvd3cRx9VGyZ46bLjCk1E8xfVmHlGmIqQVcLq/htEvn5iHVDZWW97PB8CEelM6R+N+ojuz24WS1eogxF3FcMdntw6miYnPctSGb6aEE8RiSqUNKI/QMDCkNzLhy5WEYFZhRbz2HVmhxBNy1a5eBLUqOZ57ZhGXLpoLjZhtOOzX6Qa10STXStpb30xWhXitN1OhZ432j9vYHEQ67MHDgHrjdx1BQ8Dry8qaC47i4kRqM1INKsXPnzrQ44EYgx6XMS/8TkhE7WHFnZrPVpJTcS6n4LhM7sr5sdi4iXbQzWpyT6mlZqa+clFbZcEJP9P3U6lnFb+R2jyWncwq5XCVksw0ll+sUFRWFIv6BmRaLGz3vYIrsMsuQjDAQEAfNunWbyG6fSBznFNIfKxs8fWGxT2VBypZU3cmQ7pToWlPep5pQL9H7LS0tsnoYt7skLWJIOZoYEXGjhyEVk8MxiQoLLyG7fWLEX40Xv/soP78to4ZD4ryrqHjfkI2AyZAyzJDS4Qjp8/lULWyZ2H2qWXz7ulFFMvSFDYH4vaqqqlLaUCXbkC1btqrXWCwouItstlEZs/JUOj/U6Ap7R/HwEuARjBmCESs7xg6S3T48I2M8HfMuHkMydUhpgpGBIWtqajBq1Ci43W7FcuV0+xhp0QWkmm5gz549OrTcOGQqYaISusR+rxtvnIP29hMIBmujnlPqA5PIh4boLN5664+9xqLF8iK6utqEiPTq61SDWJoomR8ijX7xizdw/vxJNDVNRWvraADXyeoK5cscAWAugNUgqgcAEDUCeBJEYd36pwbSeffNb/bQJR2pakyGlEYYZSBw6aWXqn4n3fmRtCy+qToCaqFLPOgdXTmTTsdK6BL7vYD3QDQZfv9tmjZUiTZkd911Kxhz9hqLFssQWK1DEAyuiLwTDB5Fd/eSlHNQxSKWJkrmh0gjYAcGDdoLh2MvBgy4EvfeO1c2dYRcmeFwGIytB+AFcB34vFAzYbNNRH7+xRlxYpbOu7ff7qGLkQ64IkyGlEZIc598+OHr8Hordcl5UlNTI3s/0SKaTq9vrYtvqqfKeHRRA6OsvDKZMDEZXeJ9r4EDXwbHNQC4VtOGKt6G7Lvf3YR4YzE/vxtLlkwCcB1aW0ejqWkqzp8/iV/84g1dre1iaZJsfuTn5/eikcUyBLm5P8Yvf/mm4jnHcRyAJjBmgcv1fiQvlN3+IIBmdHZ26r45qa+vx7vvvov6+nrZ36Xz7oYb9kT6rYc0Jynk5Hjmpb8OyUi0t7dH/a1UN2GUDilWT5SKQUcqlmOxdNECI2mUKf1YMrok+15VVVW6+yElozOvp7mLXK7Thug75WiSqE1ax7RcmVbrbWS1TpLcqyOr9Tay2YbqqlsMBAJUWlpGHOcQooo7qLS0jAKBQK9nxXk3ceIMQyw2YRo19F+GdOzYsai/lS6iepsJx2OELS0tKS++WizRYumiFkYzDb2ZnVIaJaNLJphlorGYjvbI0cSINsmVWVGxmSoqNkXu8U6yk8jlOqUr85069QZi7GZi7JQkovgtVFpaFvedQ4cOGeKyYDKkfsyQGhoaIv/XMlF8Ph9t37495dwniRbYTFj0SemiBUbH8tNrQ6DWWk8JXeSswQoKZkelQzACckw1HTEVE9EkHqNPZUzLlen3+6mqqorc7mJdmW93dzetWPG4EC9vHwE+YqyNOC5MjNUSxznjzv1U51A8xGNImU3YbkIXdHd3R/6fSDcRDvO6iVGjRgHg9SObNj2Dbdt+BaAQwFksWbIATz21TrVeq0fvsCNK7wC8gG3bZqK6+mMAL2LbtpkIhwvAWDMefPBuQyM+SOmiBVKZv5SeoZAPjKWuZxN1iuvXr4HP51OUuloOonJdpH0o5MPLL68E8Ay2bt3Y63kldOG/yzN45ZXr0Nraja6uNlitQ/CLX9Tgggsu0DRGlECMQCCio6MDnZ2dIGo07DsAiWkS2yYRIo3UjumOjg4cO3ZMth6bzQbGnOC45PNXKTZtegavvbYXwGgAlwIIgagVgB+MDQVQiAMHDsDtdvd6N9U5pBpyXCrZBaAEwJ0AHgLwoPD/Yi1l9eUrW05Ip06divxfzQlJz1OL0l1sOiM+SOmiFdkQKSARtJyI1dDFaN1NPMSe+owSY4lIZawoHdPd3d1UUbGJbLahxHHyMev0Fk+K5TmdNQQUE1BHABEQFE5KpxKekPSYQ3JAqn5IjLHxjLEXGGOnARwE8CaAnwD4d+H/hxhjpxljP2SMjdeXbZpIBJvNFvm/Uss0vc2OlVrtxcbg0tucWgopXbQiW2L5xYMWaz2ldOno6MAvf/kGcnN/DItlSKTcdJimx5qd2+2fABiOjo4phnyHVMaK0rhymzY9gxde+D0CgRkgqgJwEJ2df8ELL+yKuD/o7a8ojo/c3NHIzZ0HYAWAMwByADQAWIpp0ybJno4AfeaQKshxKekF/pz3JvjonX4AfwLwJIAFAG4GcIvw/03Cb37h2TcAjEpWfl++suWEVFNTE/W3UenMkyHRaSJ2F5mOKAWxdFEKaVu1RsFIF7TsqJXSJVP5sBL1ye0emzAjstZvpHWsKIXf7ye3u5gYK47JDBskxqrI7R4rMzdSNzaS0rKo6Dzl5j5BQAkBVxNQSFOn3iBrZSfCKLogBR3SAQBVABYBeJuIEm6LGGN2AHeBZ8UHAOSp4pAmVGPo0KFRf8vpJgDg5MmTET2FEfoROZn60qXzEQ6HMXr0ZEj1VOFwGK+8clCx3kMLYumSDLE6Nb//cxCFkZ9/MRhrjujXsgnijpqn3QsRWobDK/Hgg/I7aqV0MVqHFg+J9aCFsNlsUf3SQxeqdqyohc/nQyiUD8byAEj7lQPGPAiHB0f0QxaLBevXr8E3v3knAGDkyJGafX/E8fHSSyvh938HodAjAG4HsBpXXTUR77//fwlpZDRdekGOS0kvALcne8aId/vClS0npP3798f9LdFJJB1+SHJ1OBxzyG4fbrhZcSK6yEHa1vz8NmLsIDE2l+z2LVmnO5JC7Y5aDV0yFe9QzalPjzaqHStqofSEZITkIBAI0LBh44SYeVcTUEIWy2oqLJyblEZG0QWm2Xf/ZUihUCjub4kmq9HpCuItLA7HTuK4YioqChkqCkpEl0RtLSoKCZGXg5EMvB6PP+uDuioVWamhS7ozlIpIPemdum+lhiZasX79FrJaJxFjc4VxxQdRtVpvi/TLiA1AefkGYqyIgCPEmJcYa42bIj0WRtElLQwJwJUAfgZgtZ7lZuuVLQxp165dsveVTlYjLN/8fj9t376d3O4pMkzHTxznIqfzlKEnpHh0kYNUX9I7C+/0SCTnTKYEiAe1308NXbTWkWp5coxQXVpwdd9KC03UItrKzk2MjSartYjWrFlvmAOw3+8nh2MkcdzUmKzSQeI4H7nd0xLSyCi6xGNIqmPZMcbujXPdB+BR8LqmJ3SRJ5pQhCuvvFL2vlILLD2zT7a2tuLb316DUaOuxPz569DY6EVrawWIemKOEfmRl5cLojW6Rz6XIh5d5CDVl/DxxQi8vwZvJchxnrQEl1SKjo4OHD58GI89tlF1nD01dBGR6hgRrSlbW1sVxQaUxn18773XcM89d+GXv3wD1167KOodvWIyaqGJWlgsFjzzzGacPn0AS5bMQ2EhMHDgCPzqV29h06ZnUFtbC73jG/p8PuTkuAC0CGM5UiqIGhAONyWkUTroIoWW4KqvAXhV5voZgG+kUK4JjYiXfjmdAVTFIKRDh07AT35yAA0Nb6Gz88/Iy9uJQGAv2to2ROoOh1dixYoH8NBDXzLUnFptWuo5c25FKLQC4XADbDYriI4AeARW690g8ssyTCPN1uUgDfY6adIt+P73d6K9/Y/guA+gNH1FOlO7xwanHTbsS/jBD/4TodBfQPQewuHteOmlfVi58nFZGtrtdvz857/Fa68dgVykeL3MpJXSRI/v/b3vvYj//M8G5OR8gJycjyL9+elPfwm956vH4wFjrcjLuwPAyghTIjoNYDUWLZqfkEbpHCsA1IvsAISTXEEAa9WW2xevbBHZJUK6lNLr128hh2OORGkbJI5rovz8NiHFupPc7im9dBCZSo0uQqpEdrmmktVaRDbbcPJ4ppHdPpxstqHkdk/r1e5MJdcTv6fL5SWOGyuEfuHpbHS8OS2Qjr+iohAxVkXAXQSsJY6rJ8bqCKgijnOT212sKSNrOvRcen3vZP0pL9+g+3zl5+ZcstnWEseNI46bSowVUWlpWcaSQUIvHRKAdwFsj7neBZ/QIwygCcAkteX2xStbGFIiOW86Jqs4yXhjhem95NRFRSFyu6fR9u3b07pQKpF/85N1vsA0fcTYPgJuoCuvnEEtLS2GxDHTCulixjOk6b3orER3oqdeINGGInbxdbu7iTEfAacJGCdEDWgi4DwxNo0cjp29aKhGR5TK5iYZTfT63sn6U11drft8la4BbvcUcjhGUXn5BkVlpluHpOsCDeBFgSnt1LNcBfVeBN55txVAG4C3AVys8N08AM8BqAMQAPARgGuVvJstDEmJJYyRJxFxkvHGCmNjzFrryeH4nJzO4pSDt6pFMrqICybPjJoiKaT5KMhFcQOJZip1hHQx603renK7uxW1QQ/LKSUnhtjF1+MJCkwoSMB0AnYK/68joITc7jZZg5t00DoUCsWdI3q2IdOGRmrLTLeVnd66nt8L/35J53LjgjFmA/B3AOMA3AfgHgDFALYLTrrJsA3AA+CjT3wVPGP6P8bYFYY02AAcOnQo6TN6Gi7EQtRVEflhtS5Aj6w6hHD4DM6eXYzOzhAuu+xaXZOqJUMyuvh8PhAVoKtrIIDB4MOpAIwNBWOX4NVX5cPjZCq5XrThhV1C69MACLySOrnuRMl4SQYlGYBjdZhEBMYYgCPgBSluAI0AVgH4OgCrrMGNnqF05BAMBvHSS9viGlro+b2V9seI+aqlTD3GiirIcSmtF4D14E9I/9Sz3CR1rgQfqmiM5N5I8LqsNUnevRy8OdX9knsWANUAfp+s7mw5IXV2dma6CRLdximy258SAjkWC854D5Pdfpbc7rq0Opcmo4vf7yencwwxtk84ZYSI47qJsdPEcbx4Q070lcnketE6mW6y2dYSY0Vkt09ULN5JdbxoDeDbo0P6KgFDhfFRQsBmAk6RxxOULcNosfP69VuouPj+uOI4vb93pny7tMCotQU66pB+Fuf6q8AEQuB1StLftqmtR0V7/gbgA5n7OwDsSPLuRgDnAdhi7j8F4ByAAYnezxaGZHQcLiWQTjK7fSIBLoEZeaMMHMRJ7PP5qKqqKm5cMj2ghC6802AZAUcI8An5YsrIYpkZFV8sFpmKAq7UPycRUh0vavQ6se0Vo3Y7ndVkta4g4GYC9hJjPmKsiqzW26iiYrNsvUaJsTyesfSNb3yakNkY8b0zbdCjBOmOZaeFAYQFpiN3xf1NbT0q2nMGwEsy9/8NQEOSd38DoFrm/jzh5HRpovezhSGdPXs2002IwOfzkcMxkgoLt8c1cLDbJ1JenjtuCH69oIQu3d3dkrAqUwVl+2ME3JQwk2amd7mpLGapjhctJwaxvS0tLRG6Wa0jBXoXE8dNJ8ZKyGqdRBUVm1JqnxqIzHXatLMJmWtf/t6pwKi1JR5D0qpDYnGueL8ZiUIAzTL3zwIoSOFd8fcoMMYeZIxVMsYq6+rq0NjYiLq6OtTW1qK5uRlerxeBQAAHDhxAOBzG7t27AfTY8+/evRvhcBgHDhxAIBCA1+tFc3MzamtrIZZ3/Phx+P1+HDp0CMFgEHv27IkqQ/y3qqoK586dg9frRVtbG06ePIn6+nrU19fj5MmTaGtrw5EjR3Du3DlUVVXJlrFnzx4Eg0EcOnQIfr8fx48fT6lPZ8+eRVnZbBQXl2DGjOG46qqDmDChEWVln2PIkC7MmvUxQqFm3HffoyCqwsqVv0Zn518QDOZj06ZnIn3av38/Dhw4gCNHjmjuU01NTdI+7d+/H6EQw+rVvwJjL2LVqpfAceVYvXodjh2rxZ49e2S/U0tLCx544B5UVb2H//zP76O6+mPMm/c1WCyWuN/pyJEjun2nhoYGDBo0CG1tbaq/0+HDh1Mae3a7HU89VQ6b7XHMmvUphg5tw5Qp+zBu3DNYvfpBNDU19eqT3W5Hc3MzBg8ejK9//Vbs3bsDDz00F8OH/wVLlryF8eO3Yc6c3+PKK3+LXbv2Rtpm9HzyeDxYvLgMhYWncdddVcjPP4eysiMoKjqGadNGwmKxoL6+HqdPn8batSvxt7+9iffeew3vvPMrbN26sRd99J5P7e3tePHFf8ONN96OFSu+gzvvXIhnn30eR48eVbVGaB17nZ2duvcpEAjELqsRMJ5ZKQdjbJOqFwQQ0VNa3ksGxth5AN8nonUx97eC94eKG8qWMfYXAPlEND3mfhmAP4O3tvtHvPevuuoqqqysTKn9eqCurg5DhgzJdDMA8I6Do0dPBtEOdHS8jM7O/QBeAGNOEB0EsAZE+8DYp2BMVBKHQHQQLtddOHx4J773vRd1yWKrhC5Hjx5FaelCQTEfRjgcBsdxYIxDOFyKDz98XXWGzmyHHuOlJ8L2r8Hv+5qxZMndir+TlO6xSDfdn3jiaXz8cRP27LkbFsulEJ2gH3zwUt0iz6fSNj4bcGwk9/S0zai1hTG2i4iuir2vOgexUYwlBTRD5iQDcZYkxlkAF8d5V/w965Gbm5vW+jo6OuKm3JamQ7DZvg/gZ+js/DLCYYYBA1oADMD585dImBEgDcG/fv1T+N3vTuuSlkIJXWJTLOTk8EIDo1MsZBKJ6JLo20qRavr1TKW2iEUwGEQ4HEZr62dobn4HQAvy8nKxYsUDGU810pNEc0dUEk3gBWzbNhPr168xxGpWinSvLf0hxM9+8IniYzEBfD6mZO+OFEzHY989D6Am9eYZD7/fr3uZciFSYsPAxItD1pNl9UaEw6+CqAFAE86fH4xz5zpAdBzhcK3kDT5mHGPNePPNP+qWxVYJXdJhVqwXUg1bI77f1NTU6zel3zYWWs2TjaK7Whpt2vQMXnnlIEaMeBFu9yEUFn4Kq/UacFyO6hO53siUe4EURqwtCSGnWKJoBf+NyZ5J8O4sre+qqGMVeOu+UZJ7IwB0A3g0ybtXgDdeuE9yzwI+RfsfktWdLUYN7e3tupUl5/AoWnGpDWtSXr6B8vKuiAq3DxwgoIyAK3qF4F+2bJUukZtFyNFFTjmcaYV1MqQatib2/YkTS3u9nwmrQT3proVGUuOMyy5rT6v5vhJk0r1AhJ5rixTQamUnLOx/B+80mqPg+VwAd4I3uz6f7PlULwB28CeZKvCpEL8GYA+Ao+D1Q+JzlwiM68mY938DXrS3FMCN4CM+dAG4Mlnd2cKQDh48qFtZ0QtTmGy2GmKsjGy2UcRxDrLZ1lJRUXfSyZEoIRlQRUAhMRZtZdfS0qLrBJTSRcmCla1muKkyi9j3Fy+uNNTPRi30oLsSGsXWIzVfX7r0oGF5uVJBptwLROi5tkiRCkP6EngFfxhAPYBfgXdG/SqAUgAzANwGYA2A34F3vQ4B+BOACcnK1+MCrwd6C3zYoHYA/wVgRMwzI4TT0OaY+1YAz4M3H+8CsBPATCX1ZgtDMiqhXn5+G3FckxBKZxwB/yTG5pPdviXp5PV6veRwTIox/ZaGE7qa3nnnnV5+SHpOwEyfAPRAqsxC7v0RI6JDDOmVUyhTSEajHlPz6M2IdAM0YkTyTVYmkOnTu1H1aGZI1LNwTwfwS2HRl/M3CgNoAe8Ie7XScvvylS0M6bPPPtOlHOnCJM2aKiapY2ynEF2az6Cq/IRURxwXlk3ZHAs9J6BIl0yfAFJBqsxC7v01az6Ler8v04coOY2WL18ddzMiblRWrfowqzcqmTq967W2xCIeQ1KstSOijwB8xBjLATAZvOLfJZw6GgDsA/ApEYWVlmlCH1x++eW6lBMde8wB3oUsB6LBgc12MQKBCwAMRjjsA5FdMEHtrYQeMGAAxowZgfr6zwE8DKIXwZgbRDWwWtdj6dIFsorrVK23pBDpkkg5HA7zyuFkJsZKrc/0RqrWaHLv/8d/XI5gsA5EjcjPz4+yjARizYuzy7BDDoloBDQJhjLvyVqqVVd/DOBFbNu2GEABGGvGgw/enXELu1iIxiPphl5ri1KotrIjohAR/ZOIXiOi54joX4no50S0y2RGmYFeSbSklk+8ZRyBD9y5Elbr3Rg0yIO8vGYAXjD2zYRJ9TZtegbV1RfCar0NfAD1SSAah9zcmVi5cnLSCa9HcEmRLqkkKtRqfaYXUrVG6/0+YcGCd9HYeF9UwNuNGx8TLCONS5hoFBLRaM6cW8GYI66lWlNTE7Zu3Yj//u/X8OGHr8PrrcTWrRszbmGXLci6BH0ANiNGH2Ne2SWy0xOxMekYK4oYMojijPLyDQnFB7EiII/HT05nFRUWbie3uyQjIiCtOqRs0D2lKsZU8k2lBg5aREOZNgiJRyO9DWVM6AOkYNQQBnC35O85AAqSvfdFuLKFIVVWVupept/vj5h6q10I5WT6Ho+fXC5v3AjaRkBKl5aWFlq+fDW53WMV90VOt+Lx+Mnh2JkRxprqoi/GGayoeFe3xVmtubXRjEuufCWbCiPmUH+AUXRJhSE1AVgq+TskZVBf5CtbGJLRULuISBfyoqJustu3EMeNJY6bShznVJytUg/ELphudzEtW7aKWlpakr4bbeQh7cd04jgXLV++Omt8lZTACGs6pSfITKV8j647O/3MvohIhSHtAK8EGCb8HTYZUnYxpL1798b9LVOiFHGh4vP1zBes85rIZqtJm8hr7969sgumwzGPli9frcpk2m7fIvTjTMRS0OGYl3XWWIkg9ufhhz/W5YSkNS9SpkSfieZCojn0RYZRdEmFId0APjdQCMAh4d/XAdwCwJPs/f58ZQtD6urq6nUvkztSsf7y8g3EcU4hAZ6P8vPbaMiQcNrk92fPno1ZMMOUn99GjFURx7nJ7S5OSpP167eQwzFH4uDbO7dTX9JDrF+/hUaMuFcXxqD0xNUXzMq7uroytnnLtP4tEeTWFj0QjyEltbIjor8DmAjg+4L4jgG4G8D/ADjNGDvNGPsfxtjTjLE7GWMjNNpXmNCIkydP9ronTTHN2PsIhf6Gl17aF5Vi2khYLBYsW3Y/nM4xcLnGwu12YuDAgQBY2mJxHT58GFJz7/Z2Pzo7u8HYeACjEQq93ivtdiyeemod5s27CIwBjHEAmmCz5WLgwPy0xhTTC089tQ5r1kzXxZpOqfViNsRki4U05l0wGMTLL7+adkvKTFtwKoHc2mIktKSfCAN4DHxonskAJglXEXifJABoJiKnju3MSmRL+om2tjYMGjQo8ndPCoh30dlpR2dnAAADkQ822y2ord2HwYMHG94uaSqK3j40M+H1Vqo261bjD+Tz+XD55deBaAc4zoX6+kYADhA1grGZcLkqQeRP2paOjg6MGnUlwuG/w2IZIjCm1PqRSbS1tSEnJyclvyrxO/zkJ6/itdeOJEyPYMQ40IqetBk96U1Gj74Yfv8InDnzdFpTPGQ6tYQSxK4teiFe+gkt0b63APgHEf0nEW0gotlENBTAMPBx5J4C8F5qzTWhBi0tLVF/iztSnhl1g3dydYGx8ejsHIh16zanpV16RnTWsps8d+5cpP5gsA48U26E6FfFcXZFu3S73Y6lSxcCeBThcENK/cgGtLS0aPbziv0Ov/jF71BScjbhiSuTEdVjo39LJQcc9yHC4e346CNgyJCxukSYV9MuPrWEPpHt1dSrJhp67NpiOOTkeObVt3RIPp8v6m8+bE+JoCsJRmLIMXaGGCtJq8myXhZOWpTiPp8vUr/bPZY4rpgYKyG7fUskQKxSPUZ/stSKHS9qEO87JPNNSzf94kWtd7ujdVludzcxto8mTbotEg4rHXH80h0/UKtOOZWxkghINZadefUdhkREtHz5amLspkikbZ4Z8YFRMxEwMxXFrValuJQufr+fli1bRQ7HnJQU+tmsgFYKrYuMHsYJ6aKfHOMsKJhNdvvEqLaLMRuvuOIb5HBUU1FRKC0GF+k29NBq5ZhuhtQfEvR94dHV1dXr3ne/uwlWaxWAawHwohSb7VLYbIuRLFyOEUglFJBWpbiULna7HS+++BweeujylBT6eoQ0MgLJRDHS3+XGixLoYZyQDvrFE4dZLC8iEKgTxLc8GGPguCYUFATQ1NSK+vpGtLZ6EQrpI06M913SKcZMRTyodaxohcmQ+gEuvPDCXvcGDx6MVau+hcLCiSgo+CFcrkrY7Q+C6NE+p/fQGosuli5i4Favt7LfxC1LpluT+/0Xv/itJkuuVGICphPxGKfFMgp5eYMQDK6I9KG19ShCoUdx4oQFHHcvgK8hELgGY8eeTSmOnxzdH3tsIw4fPhxhAD2ZlY2NH5jKRkJubTESJkPqB4g3oJ56ah0eeuhyWCz3ASjrUwEzpdC6m4xHl2w45aSajlxErJKeaEeUKbvc79XVnZrM//tKuvdEjDM/PxdLlowDYzMRCk1HV9c0WK2X4ZprtsLlqoTD8Ws4nR/A6/0c586d09yGaLp/gPb2P+L739+JSZNuiWwaAKRlg5TKRiLtJvlycjzz6ls6pHjOa6K83ufz9Xm9hxaleDKnvkzog/R0WE6mh/D5fLK/jxr1uQ6x67LbuCOZzsTv99P27dvJ7Z5CQ4YQjRnTSW53d0SHpFTPKjeGEiW65Lhx5HJ50x6lQqsOKd2OsRlf1PvylS0MKTa8R6ajNBgJNUwkXtiTTNJHzxA6ySy1tm/fLvv7I4/sTdmwJduNO5QwTt4adSzZbDW0ZMlO4rh64jgf2Ww1SRl2ojGULNElH2Q4vVEqtG4ksi50kHllP0OKRTbEDctmZIo+eltWJSrP7R5LO3fyUcnV1pftzEYJlEoHSkvLiLFbhNMLEWO1xNgtVFpalrD8RGNI+l3c7m6B0ZFg8dqTbbmvWbvqiXgMydQh9QNIk2hlyuEuGyGXXMxI+iTTC+kdQsdut+Oee+aiu3sJgsGjAIBQ6Aza2x+A39+Or31tFfx+P9rbH0AodEb43YfFi38jq/PpC6FskiG2D5dddi22bfsVBgwY0OvZjo4O1NScgNV6GVatehm8NeqNsFovQ03NyYQWi4nGEICEiS45zp4xQxC1+tN0J+gzGVI/wOTJkyP/z8a4YUqgl5JfCildRBhBH6ULuZ5WamKdv/jFGzh//iSamqaitXU0/P6rAJyC3f5PcNyHsNv/CeAUOjqujlhycVxb3Cy/iQwk+gLU9MHn84ExBwYPfha//vVjcDheh8tVicGDnwVjhXHHgpIxJFrQcdwNsFpnAZgMq3UEBg5cl5WGIPEgN4eMhMmQ+gGku5i+Yporwshdudzuzgj6KF0E9bBSExn3unVP4eWX9wPYgUGD9sLh2IsLLpgEIIyBA/8Ei2UYAMBiGYaBA/8Eu92Gv/71ZXi9lfj612/tZcml58nRiM2F0nq3bfsVGPsB+JiF4V59kLZNOhYWLz4Ei2WUotOLkjEkdTHYvftNPProUgwc+N8gurZPWbtmXQpz8zJ1SEZAlGWXl29Ie1vV0ieR3F2tXkirclmqRHe7pxDHOchmq6EhQ8KROp3OU8Rx7l4hcJToK/QIZZNpY5rq6mqy2ycKRgT1MSlPptHy5at7ta2iYlPaUttni/4mGwDTqKH/MqTPPvss6u9sNs2NXlinCQvr2khsOT3Dp8TSpXcbEtNHyQKrdSFXuzhJF0CXyytk320SFlxpGJxicjh2JmSOcnTRw+Ai0xuh8vINxFhRxEBBzF1ls9WQzTaUHI55vdpWUbGZ1q/fQqtWrSWHYxK53SUqNwjZN8f0RLw5lCpMhtSPGVK8SZCNOzLpoiUGthRj7CVbzH0+H23fvl1xfK1ki0My+ihZYNMRkyy2Do/HTxw3Vlh4fVHx1+z24Unj9cWjSyoMJdNJ+MT6ezIUn4lYzQE3kM02LG7byss30EUXfYmczimKGZK03mybY6lC2iejGGw8hmTqkPoBampqZO8bEZEgFf1ArJ6C4zgw5gLwPAKBXyMUqkcweFSwGOuR4Xd1dWHGjK9gyJAJuPHGb2HIkAmYMeMrSeNsxaOLiET0UapTSUf0glglOsfZYbUuALAGRA0Ih8OROh95ZGnSeH3x6JJKKJtMG9OI9Q8a9B3YbHwfRKu5vLwjsNmGyrbN78/Ftm2foqzsNeTm7gTwnipDjmRzLFP6NC2Q0+e+9NK29FpZynEp8+pbJ6T29nbD69BDPyAn3uJTijcR8CVibCRx3FRirIhKS8siZWv1FUmFLmpEcUaLb+ROH0VF3WSzrSWOc5LbPa1XnYl27snoomXXny0nJOkp0uXyCk6oJbL+WC7XaeI4J7lcXrrssnZd25xpfZoWyJ2QJ0xYYojIFeYJqf+isbHR8Dr0MAmWs07iU4H7ADSA6LcAfg+r9X1UVxdi06ZnUF9fj48/3g3gFTA2FACEf1/Bxx9/ivr6+rj1pUIXNdZ4RgdtlTuFhcNNsNmOY82ab+Gjj37Vq85EO/dkdNFyss50nLvY+jnODsbsIFqPpUsXYunShb3aFgyuQF7eIFgsozB2bA9N9DjVqZkv2XCKiicRGD9+RVr9F02G1A+Qn59vaPl6mQTLLVrB4BmEQrzDoMMxGE6nFYMHj0ZODl82b3bqjDAjEfzfhThw4EBUO6UTOxW6aFlgpQu53otMPHHaM89sUs08jBov6YperaV+ud+WLBmH/HwLQiEfzpzpoUmqLhJK50s2OSLHE7nW1w9FWv0X5Y5N5tW3RHanT582tHw9s1vGireczmKyWDzEWAlx3HTiuLGRjK4ez3TauXMncZxDYjlFEbEdxzmjssLGikdOnTqVUr+1iOKMFtXooUQ3erxkWtEfW7/079jfRDFVWdkB3SwDvV4vud1TyOXy9jLBl86XTFslShFP5FpWdsAQkStMK7v+x5DEyVVTU2NY2eIklhusLpeXHI5RmrJKiuWvWPE4MVYm0Q/xmW1ttrWRiZBMhxRvYv/rv76gOy2SIZsWmXhIlVHrDaMYmJLNgfjM7NnzdNH/dXd3U3n5BuI4h2Ca37PBkuqmMq1zk4Pc2L3llsfSqkPK+KLel69MMaTYiTZ16o267cLjTWKpA6GoUGesiOz2iZpPAT2mujXEcU2RiMg8wymi8vINREQUCASotLSMOM5JHFdCHOek0tIyCgQCCSf21Kmz0jqxs3GRkcPZs2d1L1MLU1HCMFJhVmo2B7W1tbowRbFOq3UvMbaLgCORDZbTOZ/KyzeQ1+ulqqoq3aQOWiBHVzmJwNatz8nO61Q3ESZD6kcMKXaifeMbn+q2C483iUUHQo9nHNlso4ixskikAK2ngB5RYFjIGdPjYW+3T6Tq6uqo5+X8kBKJE7/xjYfTmmJBT9GmkdDzRJ2KiDIRw0hV9Kl2c6AHTfh0FiWC9eNYAqYRUEzAI8SYg6ZOvYHc7hLyeKaT211MdvtwcrvrVG9eUmEGajcBsXTRSyRtMqR+wpDkJtqECZ267MKVTGKfz0dO5xhyuU6nfAqIra+oKERudze5XKcVl5WozePGTTVs0qptSyrfRm+RVmdnpy7lEGkXUSajVaohpZJtDqqqqqJoqgdNvF6vsFmTOubWEWPzyWK5iAoKZkf1x2qdRFbrbYr7qAczKC/fQAUFd0Xmb7I6Y+mil0g6HkMyrez6GOSsYa699pgupqpKnBv9fj9yclywWIbEfUYpYi3ZGOMANIFotWJT4UTWcCtWLNFkbqzVxF1v02ejrLCOHTsW+b+ejs6AcutLubFGFAbgQDg8EK+99puUrDpFs/1gsA6hUFAom0/P4fd/jhtv/HoUTb1er+r+xyI/Px9dXa0AngdjfLsZKwLwPILBDuTkPBvVn/z8P4CxXQCuU2SVmIrrRTAYxGOPbcTzz/8ELS2b0dSUg/b2duTkuBPSNXasGJ3axmRIfQxy/jF/+MM4XaJ5K/G90Ttath6mwvHKWLLkPlVtAVKfdHqaPhuVDmLcuHG6MLtUojNEjyNCe3s76usb0dBQjcbGGnR2WpGT41ZdrogBAwZg9OiL0dh4HxoaqlFf34jWVi/a2x9EOOwC8I8omv7Hf/yn4n7Hg9/vh9U6FIzlAQgJd0MA8gAUIhxuRDjcM374SOyX4G9/ezOp/1qq43LTpmewbdunAMaAsUsBONDZ2Y32dn9Cuo4bNy7y/3RE4zAZUh+D3C58wYKPdHFAVLLD1/sUoIdTabwy9u3bp6otQOqTTk1/xNNJfX19r1OKkbvRzz77zDBHZ0DZ5kQ6jlpbj6KzsxtEQQBPIy9vEQKBBrS2HlVdrohNm55BdfWFsFqvBGN3AfgaAoFr0N39oXAyyUcweBSM5YPjXkAw2J3yDt/j8cBuP4+8vGYATQAaADQhJ+cMgLNobn4MDQ2T0db2NIiCkf6MHDkyqS+ZdFwShSOnPiXjUhxLFsuLAFpA5AOQA2AwOjsDCAbrEI+ulZWVsuk6pNA1tY2cHK8vXeCZ6joAxwF0AdgDYI7Cd18DQDLXD5W8n3krO/1D1Sgpuz9HOk6HpZxIP7d7rJAuwUE226iowJ5GGkjo2cdUdAo9JtJOwUR6XMREmrfiLFOs60jUPzGMkMNxmBhzk822gThubJTfm9s9TTVN5XR7Ij1crtPkdneTzXaEGLuFLJbVxHFNggVpj9WdUt0LbzAhWqT2GP/YbDVJv5nUL8pm2xCj49pHBQV39WqHEmtbI3RIGWcoqV4AtgI4B6AcwPUAXgIQBnCrgndfA1APYFrMdYmSurPFD+njjz82rGyjrH3SgcrKSk3v9Swq3sildtIloo1YvmjuLrdIGckY3333XcMcndVuTuI5kfJMaRQ5ncWqy43HzIuKQgSMJuAWyYJ8hhibS48+uk4xTRMZF0jpwadXcQrpVc5HLEkZ20cc56Ty8g2qNnFaYjrK+UXl5pYRY2OFv+XbIY7Rior341rbprIZ7ZcMCYBbYEZPxdz/G4C9Ct5/DcAprfVnmiGZMAbRfk9jo/yekiGZJZTIaPjAnj6J79UZ4rhxwsLMMxyjnGyNYHZaNyfJ2uLz+XQL9OpynSbAQcCuCN05LkiMHSS7fbim3FTxvovf76ft27eT2z0lyoLU4wmS292t+kQWbVI+TjjdjSObbS253WOTplCJ3fxYravpwgtvoqVLv93rXSXjwyg/pL6uQ7oJwAUAXo+5/zqAiYyxkelvUvqxe/fuTDchK6GVLk8//RwOHy6Ew7EXTuc+OBx7cfhwIZ5++rmk7ybTzYi6AD7tBgMvy4dglVUglMLrBIyKDVddXa17IFStqU6S6STdbrdugV6DwRWw2QYjP78YUh2P3T4M3/72Q4qU8mrSklx99dUAWtHa6kV9fSMaG5vR0NAEv/8EGGtRpXPx+XxgzIHBg5+Fy1UJh+N1uFyVGDz4WTBWKNt2aVsHDx4Fmy0XjFlAtA6BwKs4f34f/vCH3b0MWqT6qnvv7ZlDUn2VEaltAPT5E9Kz4PVGLOb+FPC6oNlJ3n8NwHkAjQCCAA4DWAsgR0n92XJCCoVCmW5CVkILXVI5PSjdWSo9IUnL1VM0GgqFMqoHjO2PEW2RK7O8fEMkDYV4YuH/PUNDhkxQRF+1uj2tqVNioWVcyrW1qChENttmYuwmcjpPyZ7wpHUNGxYyRI+KfnpCKgTQInRQirOS3xPhMwCPApgH4GsAdgB4BrweShaMsQcZY5WMscq6ujo0Njairq4OtbW1aG5uhtfrRSAQwIEDBxAOhyO7dD5qNb9rD4fDOHDgAAKBALxeL5qbm1FbWwuxvOPHj8Pv9+PQoUMIBoPYs2dPVBniv1VVVTh37hw+/PBDtLW14eTJk6ivr0d9fT1OnjyJtrY2HDlyBOfOnUNVVZVsGXv27EEwGMShQ4fg9/tx/PjxrOjTkSNHUu7TBx98oLpPlZWVAApx//214Lgwbr/9AAoKApg1y48RIyaguro6bp/4MgqxZMkpAMCiRXx75s+vR37+UOzbtw+hUAhr1z6M8eP/BVdffRozZx7GRRfV4I47/h0u1xzMm/cGliy5G4cOHYr0yW63o729HQMGDNDlO73//vvo7u7G4sV3Y/fuv+Gdd36Mjz/+E1avXoZTp05F9Um0stq5c2fK3+mTTz7BE088ja1bv4fS0oXYuPFpbNy4FYcPH8a6dauxY8d/4S9/eQkff/wnLF++GO3t7Qn71NHRgR07dqC9vb3X2PP5fHj44aWorPwL/ud/XkRV1XtYsmQBHnzwXtx99y8RDjdgyZI9CIcbsHjxb7Bx4yocPXo0aZ8CgQDy889hzpydUd/4vvs+ANCMs2fPRuZTQ0MDhgwpwqRJMzBlysOYMWMxiovvwx13fAVNTa3Ys2eP4vl0/vx5PPbYckyc+D2MGnUE11xzHA7Hccye/VM88MDCSNJF6VzweDyYO7cUVusplJUdwdChbZg61YuSkk9w+eVbcM01QQwd2oabb27DoEH/ira2NnR0dODQoUNYsmQBFi/+Db761V345jf3wGI5jdmzf4rlyxehoaEh5TUiLuS4VKYuALMgb/UWe70rPP9TAHUy5RQLz92joQ0/EN4tTvZsJk9I0l2mnp73/Qla6GL0CYkoevfOW9k5BSu79CRxU0IXI6KW66UTS6Vt8U5jbW1tuvdDekIRLf1Eww0tlpKxbXe7S2jZslXU0tKiuK0Ox05ibDzl57clPOGJdY0bN9WQEzT6glEDABuAcQqui4Xn/wUpiOzitEF895vJns0EQ5KbjC+88P/6vMm1ERZ7WuOTpbJwqnlX7LMWxX0qUEIXvQ0qssXUXNoeKc3VjJVkIkbpdzXCeOTTTz+lBx54OBIXLxFDlmNiamLoHThwwJCx2ScYktoLwL0C8xgTc3+RcH+khjKnCu9+I9mzmWBIcpPx6quXZVV6AxFKmIyUwbrd08jpHKPaHDYetES19vv9VF1dTeXlG3otOC0tLSr6k70+WsnoYoQVnl5+Vam2Ld6Y1DpW5HVhPZvF0tIycjj0PRVqCW4sbasahm5EZHii/suQRLPvTTH3/wqgSmOZL4D3Yxqd7Nl0M6R4k/HWW/fppmzUA2pEKuvXbyGHY37E4Y+xfcRYGZWWlqW8iKvJ+yPX5vLyDVRdXU0tLS2qRUTZ7KOVjC5GOOXqxeS0ti3ZmNQjR5TcQu9wzKXS0rKUNyhS3ziOGysYSTRFRG9q6Khm02RU7qx+yZD4fkUs7dYAmAngJwJDuS3mub8BqJH8fQmA9wAsB/AVALcB+Jnw7k+U1J1uhhRvMt5002nNC4URULoDExepZPmQtEJNZtREbTbKHyhTSEYXo5xy9RK1aWlbsrpTzaJrhD+VXNk8Q5oe8aHiOB8VFYU0bRaUbJqMyi4cjyH1dSs7AHgCwHcArATwfwBmAJhHRH+IeS4HgDSgWDt4a7y1AH4P4HcArgCwAsC3jW2yNsSLJeX3+6FbLKkUoSYGm8/nA1EBuroGAhiMHp+coWDsErz6amox23Jzc1Nu8yuvvI5XXnnd0AjH6UYyuugdr1CEHn5VWtqmZEwqHSvxkCwGot/v1+y3Iy2b4/g1oCceHUM4HNYUT06JL1GqdFGLPs+QiChERN8hokuIaAARXUZEb8o8N5OIRkj+PktEdwjv5RGRlYiuJKIfkxirPssQbzJ6PK+lHFhVL6gJTurxeBAON4KoASIzAiBMtlbk5DhTiiDMM+rU2hwK2REOX6ioPx0dHdi3bx/27duX1YxKCV2McMrVI5CulrYpTauSCowMPCotm+PssFoXAFgJotMACEQNugRXlkOqdFGLPs+QvmiQm4yXXz4oZe99vaBmYtrtdixa9A0Aq4XJJTKjlcjLux2MtaU0kZ1OZ8ptzsnpAMe1JOxPMBjEunWb4XaX4PLLb8Dll38dHs84rFv3VMq5i4yAErroxTzkoNXLX4yOfu7cOVVtUzImlY6VeDDqVClX9sCB62C1jgAwGVbrLHDcDbpE8JBDqnRRDTk5nnkpu7LFD+ngwYMZa4cc1OgKuru7BW/2okjEZ5ttLTkcc1PW0aihSzIdksMxj5zOUxHPfml/1q/fQlbrJGJsrhBxgY+PZrXelpV6pmwbL8mgh09UsjGpB03SHYV/xYrH6a9//Sv5fL6Uy48Ho8YK+qtRQyavbAkdlE0mxUTqJ6YYkdjhGEVu9xTdJnK89+WUufHaHAgEqKJiE9lsQ4nj3MRxxWS3D6eKis3U3d0tBL0sJsaKIxGke4J2VskGvsy0BV62jZdkSLYhUIJkY1JPmhj5faPdEvRzWo4Ho8aKyZD6MUP67LPPMt0EWaidmHpP5Fi6KNlpx7ZBurP2ePzkcOwkh2NOZDH0er3kcEySWD5Jr3pyOqf08n5Px0KSCNk6XuTQ0tJCdvtwYqwqkgMoP7+N3O46TRZ/8caYnjQxesORTqtPo8aKyZD6GUPK9C47E0i1z2onstJgqUpPSP3NfDwdWLZsFTE2PipdhOh/k02uDkTp2XAYZZKfbsRjSKZRQx9DMBjEE088jdGjJ6O0dCFGj56MbdteU6Q8F5XC2WwBJge5PkvD5ctBDLwp9lVLSnAl1ll2ux1Ll96DvLx8AI+AN8oIgegI8vLWY+nSBbDb7YamJFcLMeBltqOjowNvvfVHAEEQNQp3+dTbHR0nQHQ2rtGL2rGuB030SAufDGqsWPVAuseKyZD6GDZtegYvvbQPodDfwNj7INqBior/TTjotSzo2QQ1E13a1/nz10X6WltbC7UTWanF4FNPrcPKlV+D1foBGLsMwHjYbGVYuXJyxPJJupCEwx0IBo8iHO4wbCFJhMmTJ6etrlTA5wBywma7B7yZM08jnjmV4667bu1lvaZ0rMcyrFRpkq4Nh5Hm5XKQ0iUtG1q5Y5N5ZafILp48vaLiHyl5qWcz1IoopH1dt64y0ldRCay3h39sW6uqqqiqqkrWkKEn4+dYQec0NmnGTyOgNbV7utGTO+oU2e1bIplSGSshm22obJTrZN8rnljtn//8Z0ptNSLcUjykcz5XVlYaIoqEqUPq+wxJizw91XQKmdZTqZnoyfpaXr5B9UTW05RXr2RtapAN3zAVJDMqkULJWJePNzePli9fnRKN0qnbSXcAXyMYoMmQ+jhDSqQ8X7x4e9xdtpadW7ZYgxGpm+ixfX3kkb1Rfa2urtY8kVNd2PnvNzYSRFY84dpsNYYooxN9w7179+pal5GIt/jKRV5PNtarqqpixlKY8vPbiLEqWrLkYXK7i1Ma5+mWRCQbk3psRnbt2mUIo43HkEwdUh9BInn6W2/9UFaeDmiTOadDOasUajzgY/v6v/9bEnkeaMawYcM0Rx/QGl1ABP/9CjF48Gi43U44nQVwu50YPHg0jNAhJfqGJSUlCd/NJuOX2IgR1dUfAwDGjp3aS0eUbKzz6NEjtrf70dnZDcbG4623DiAUej2lcW5EuKVEiDcm9dQZ5+fnI51GFBk/ZfTlK90npHjy9Hnz7lOVNTKZHiTbzErViCikfb333sNZoy9LJ12T1bVv3z7Z95SejDMpBuxJw3Ca3O5ucrlO94qaEe93KV2KikLCSTVIjJ2hr3/9QfJ4/Lp8j0yLSfU8qe3bty+tJ6SML+p9+Uq3DimePP3pp7+X8D01C3o6lbNqoS7h3ziaNOk2w+XrapAukU6ib+h2T6O//vWvsjTUahCQLtoqEXsGAgEqLS0jjnMSx5UQxzmptLSMAoFAVB+dzlPEcfXE2BlibD6NG/c9Xcd5ppiS3huf1tZWU4fUV650M6R4jOXYsWOK3lcySbLxhKQFfr+fKisrs6q96VJGy3/DsLCQO+n225f0YiZaDQLSefr0er1kt0+Myp0lGvbY7RPJ6/VGJbITLzmm6naPJY4rJsZKyG7fQnfccUyXcZ5ppq33hvLEiROGjFuTIfUDhiQilrHoHVwx0wuPXjAy6GQqSMfuOfYb2mw1xNgtZLWupuuu+6zXQq3eICD9GxWfz0cc54hYKYoX/7eTjh49qriNfr+fli1bRQ7HHHK7z9ANN/h0GeeZnDui24HbXaLbd5LOIT3HbTyGZBo19EGkqmCXg1SRnW7l7BcNRny/WEi/YSg0HYHANOTkBNDV9Ue0tf0LmppuRWfnCLzyyq/Q0dGh2iBARDode/1+P/LyBgNYgx6jHh+ANcjLG4QTJ04obqPdbseLLz6Hhx66XBjnq1Ie55mKxiE1Ypg160H4/X60tz+AUOgMAH3TYBg9bk2G1A/Q1dWl+V05i5xNm57BU0+tMyQXTjqRCl36OqTWaa+99iQuuMCKUMgN4D0UFDwLoh0IBI7D7++OhEBKZM04cuRIpDNCgBw8Hg/y8y2wWkeAsZkA+M2S1ToC+fm5mDBhgqo2Smn0r//6KLzeSqxfvwYnT57UxDzSHdZHRKxFpd3+TwCn0NFxdcobynTPIZMh9QNceOGFmt9NZB6cjh2RGqg1R06FLtmMeHSIvR8MBvHd7z6P++5bgXPnOkG0EYANR48OBmMeAM+jq6tNMO1NbLZsZAI6peDjBi6EzXYcDscf4XC8Dofjj7DZjmPp0gVwu92a2mi32zFy5Eh897vPp2Qqne6wPoD8qcxiGYaBA/8Eu92Gv/715ZQ2lGmfQ3JyPPPKbh1SLA4fPqzpvb5iwKBVUayVLtmKeHQIBAKy9ysqNpHTOZ8cjp0ETCPgPAFNdOedVb2MAaSIpyvQqtzWU/egJK+Rlja++OJPdNH9pFuHZLRVrFFzCKZRQ/9lSF1dXZrey2YTbym0TnKtdFGDRIut3sYL8ehQWlomGw7HZhsacRHguLEEnCbgPA0adDKlKBFK+2WkxZmeUQr8fj+NHn2lLhuzdIf1MXpTadQciseQTJFdP8Dhw4c1vZcJEYNapKIo1koXJUjkDW9EdPV4dGDsu/j440/B2A9i7j+Prq4gGMsHx9lhtS4AY6vBWBPmzq1DQcF52GxPaBK3KRXlGhnxI1kb1IibfT4fbrnlFuTkeEAURigUBFFYte6no6MDJ0+exPr1a9KmfzValGrkHJKDyZD6GOT0BxMnTtRUVjboBZLphRIpiokG4ZNPPon7rla6KEGixVbLQqyVDjwcYMwVdcdiGQJgMILB/QCAgQPXwWa7FMB1ePXVhcjJmWWY5WRHRwf27duHV155PSvyPyWDx+PB7373Jlpbvaivb0RjYzPq6xvR2uqFko2Z3Abku999HhdffHFa5pCRVrFGziFZyB2bzCv7RHaJxB+ppBNIt4ihd73Jw9TEiiSKirqFNA5OcrunxX3XqDQLicQkvA+Icj+QVOgwZAiRy+UljnOSy3W6V312+/CIn02PKG8O/du/vWSIflDaFz6tezHl57fRkCHhrBUHi9i69V80R2LPFr89I/zbjJpDMHVIfZshGT3o0x3qRE1/ejt5riXGbiGbrSZjEQPi6d4cjknkdE5RrJdLhQ6JdEhO53yqqNicsTQFHo9fiEx/UGBKmTeYiTfGo3NVjRNyVY1TlKuqrxgGZRtMhtSHGVKyQf/xxx+npR2J2qeGmamdxNJTnNs9hTjOKTCjcMJ3s/2ElAodpAymx8pOnvHEJg40gi5yfbHbtxBjc4mxKioqCmXs5JDsFOr1emnduq3CpsFPLpeXPB6/otNcXzEMUgPpfE73CcnUIWUBUtGjAAVwuVy93klHCgEtyvuOjg588sknICpQ7EAodWD87W//BU7nGCFtA0v4rlGpuhPp3pYuXYilSxcq0supdaSMTcUgKszz8vLiptUQfZFmzboLs2Y9iNGjJ+Ptt9/RPX29XF94vdVEMHYjgsHpGYv4kUyn5/F48LOf/UJIK+8Dx3nAcXZFxj19wTAoEaTrhNx8NmKsJILJkDIIpQt6skF/9uxZ1WXqATXKe2m75s9fi8bGI4LSmHr1J94kttvtuPrqq8FYs6IFYM+ePXp0UxaJFMlKlcxaF7N4FmRy9+W+UWenVffcVnJ9YcwCu/1BOJ0XYvv2bYZbnMltwpRYaQ4YMAAPPbQAjY2laGz8JhoaJqO1tQKh0CNJjXuywTBIC+TWieuuuxUvvVRl+FhJCLljk3mlR2Snh/4gVicgn6J5Di1btiqtOXdi69JTD5SIFlJxQzoiLKfqh2SkbjDeN7roolpD9BuZUu4nEsklE6lVV1dTaWkZWa23ElBFQB0BVcRYGZWWlikaQy0tLbR8+Wpyu8fKikwziXhjMPZbuVynibEystnWpmWswNQhZRdD0kt/0N3dTQcPHpQts6ioW5DjFxPHFZPbXaLbRFEjO1dmKad8EsvRoqJiM1VUbIpalH7843/PikUhEdRaOarR18X7RkuXHjREv5Epi81kG5RE82zFiseJsSKaP/+fkXQWjDWRzXYk6UIcywjd7mJatmxVwmSZ6UIiJi1HE7e7mxjbRxw3LqI/M3KsmAwpyxiSVmWo3ILU3t4uWybPjOYTY2eI4+rJ6Txl+O5bjqEmThg3hbZv365pByalhdyiNGHCkj5jhZisfC1RD+J9oy996ZihFmDptNhMJY9TefkGcjhGEsdNpWHD2iUpLYLEcT5yu6clXIizxdw7UdvkMufKzceeDLpTyeXyGj5W4jEkU4eUIeipP2hsbOxVZjjcgUDgVwBeAGNOAASLZYhujolqZOeJ+spYG66++mpNsnaRFgBk9QTjx69Iua/p0snZ7XZ4PB74fD7Z9mpxto33jUpKfmqofiOdQXmVGIbE0+k98MA9yMlxAWjBpZcelb4NogaEw01x52GmUk0oMVbq6OjAK6/8Cp2dW9HUlIPGxmY0NeWgs3Mrtm37tRBMN1bfxyEvrx1EJyL3QiEfiotfxpw5txjSFzmYDClD0FMZKkZrlpbJe+gXCsyoFTabFYxxuobCV6q8T6WvSiZgvEWpvn4oUu2rkeFvRCRjeqksfnLf6OqrHf0mt1XsZicc7kAweBTB4FGIG7t41onDhg0D0IwLLrgetbUvoyfH0mkAq7Fo0fy4Y9PIVBNyY17Nxojf1FyArq4CAA4ALgAOdHUVwO/Phd/vl52PVusTmD59IjhuNsLhUnR0XIUTJz7Am29+hFGjJmH58tVobW3V3C9FkDs2mZfxIjsi/WTux44di1Lk8ymaS4jjXMRYVZS3fCKHPa2iFiWBLqurq6m8fIPivqoRUcUT25SVHUhJ3JAup8dkoh89fF2k3+j06dO6tFsrjAg663DMFXSSY4njphJjRRGjBLn6xPFltw8nYBxdffVNBAwnxqZEvZuoD3qPjURjXo14MFlmXZ/Pl3DtkWbTvfHGXWS1riJgNDE2nuz24broBWHqkLKPIYnQOkHFQTV79lxZxeUDDzxMF144JxJWJt4gVrL4a2mjXLnl5Ruouro6qff78uWryeGYp1g+Lzdhb755jWbrQr/fT++88w45HFdTUVFIkeGGVmaebGHTe/E7depU2iNzEBkX/bu7u5tKS8uIsTJBMc9HMi8snEulpWVxF3iHYx45HKfIbm+la675iIAbKS/PTeXlG+K2yefz0fbt28nn8+muQ4qn9+E3csnHiPg9vV4v2WyjJPpjIsbOEGPzyWYblXTcSiNXzJjxNQLGE1BMwGYCPiWHY17KejKTIWUxQ9IKcQBPmRJtOl1RsSlySrLZRhHHOclunxj3VJLMpFzrIqJ2wvac7ooVn+7ECdXS0iKJ5jCNbLahNHHiDNVt7u7upoqKzWS3DyfGRhNQSMBestvryOWqIY/HH9WOVBdZpacfvRa/7u5u2rr1OYllWAktX75ad8swuYXOKCMAkWGLC7m4geBdC8p6bcjWrFkvfN8q4rh64jgfTZz4OTkcpyKhgmLbHwgEqLS0jDjOIZzCHDR9+ix6/PGNulgV8kxgLNlsNYJxQX2EsTqdxeR2y4ejcrun0fLlq3tt+lyuYk2hkIhIwtDmUXHxJwQECThDwHwCKsjpPJWyhMBkSP2MIUl3zXffXRO1a7LZhkadLlwuLxUUzKby8g0Jy5HbfZWXb9C0iGjZ1YsLlsOxU5hEfBI5aSw0cZGOxwhEnxCHYx594xuf9rKqUuIXlJd3CwF/JsZaCXiMgAkEjCZgGjFWTFbrJKqo2BTVZq2LrFI66SXeXb9+C82btyFyMmCsihi7iWy2oSmfVqJFs72/i1HiTzmmLuaAYmwfud3dUfVZrcMIGCuML96q7qtf3Uv5+W2yC/z69Vto+vRZcYOvKjltJnvG6/WS3T6ROK4pql2MNZHVeik5HCNkaRc712PjG7pc3sildFyKIj/gJM2evYcAEq46AkrI7W5L2RTcZEj9jCFJJ+GECZ0xE9FFTuephBNfnCBVVVUJTbKdzjGaFhG1eg/pwtyzmJwmxs4Rx/kisdCkprwOxxwqLHyXHI6qyISTijd66BIWdp5OcrunxD3FtLS0kM02RGA+0wkYS8AsAm4lYC8BZ4ixKrJab6OKis26idKUOvpKv5uWBbylpYXs9uHkdH5KjJ0hoJEY6ybG6oixEnI45iRcsOLVLd0c8DvrskisQbEv/CJvTMw3ue/AR0GfGhk70ebNxQSMiIizOI7I5WonxqpkF/iCgjsJKCTGThHHdRPHhXrpZOJB6Qm6t94nTIy1Cc66TrJaPZSXdws5HB9HTukOxxyy24cn3Exq2cCIzJGxJnI6TwgnpDABIWJsGjkcOw07IfV5KzvG2BrG2B8YY3WMMWKMbVb5/h2MsU8ZY12MsROMsQ2MsRyDmqsbpNZF1157LHKft667UMiH0wPR+qe2tjbKWufGG+egvf0EgsHaqOdDIR9CoUZwnFOTJZFas3ap1RJjA5CTczGI7gPREYTDYbS2ehEK8VZ5wWAQP/jBT9DU9CHOnp2Lpqavo6HhOnR0XIRXX/0VxDh5Il3a2/2CxdFoEP0H4lnKPfbYBgQCEwHsAPAhgO3g4+VNBFAExhiczrEYOPCnePXV3+DYsWPQw9JKzhJu6dJxCIfDvayqBgwYoMqkWmqxtW7dZnR2DsQtt1hAxABcCCIOgBuMOQA8Lmu1F2vhNWrUlfj2t9dELK5ES8Rw+B10deUCeA1dXQVob/dHrAHffPMdhMMN6O6uBVE4UrYeMd/krDgBgOgE8vLawVjPMhcM1oG3Ol0IYCVEy7qbbtoLoocQDoeRk/Oi8A0JHR1WNDcvBlAAIgvC4WaEw40gagdjQ0BUiF27dsW1BlVqpen3+5GXNxjAGhD5QOQHUS2ALQDuB9ECdHV9gqamhWhoGAm//0rMnTsMdvtwAI4omorjb9my+zUlCvR4PLDbz8NqbcYtt5wB0AIgCMAH4CyA7xnnNiDHpfrSBeAggJ0AfgI+MNpmFe/eBCAE4GUA1wNYA6ALwL8oeT9bdEhFRXWRnZGSXVPsbtxqvY2s1kmyjoPSU4sYBVnpCUCNOEu6y7XbtxAwl4C1BIwj4Oooy6fly1cLita5gmw7SMBBAm4jq3VE5FQ3bFgo4vDH7zx7vNBj9UDl5RuIMYewIz1DQBsB3QTsE9rgjdptezzTqaqqitzuYmHH6Fd8Qop30kjm6CulXTxltBjVu0en1hNFwGYbSowVU07O5wTUC2KYMAE9tEmcIqOO8vPbosR85eUbyO3mvxt/Kpke5VzK0ytMdvtEystzE2M3RXSDbnddr/Gg9QQoF76ntLSMHA751O4u1ylhnBUTcAlxnEuwJHOR3b6FiorOU25uoyCmWkOAm4BTAr2CBDQRUE1AIeXlucluHy5rWKT0BC01JODTzRcTUCIYEjwmGCjUEsf5yOH4nByOeTR16g3CqYo35BD1rXqIQcVv7vHUks3WInzzr5DNNsS0skt0AeCEfy0aGNKnAHbE3HsSwHkARcnezzRDEsUBvGK151heUbE5rme6/ASpE5hYSa/jfUXFJrJaJwnhh6b30qEoaZ9SsYEohuPz6JwRZOgnyWbbIzDDceTz+cjlGiOI1eok8u2gEIPMSStXriWncz49/vj7JIZEYWw+2e1bZEVF69dvoYKC2YK5cIiA88KC0yDUcTUBH1NubmPUhC8v3yAox8cTY8Vkt28hlyt+NIxUk/FFi2J6yqio2ESPP/4k2e3DieN4g5DcXCfl5V1BLhcvunU4dhJj4yk39wlaseJ5gfGKyuq5ZLNtjrtQim3Jz2+L6Dh4q60SuvDCm8hunxijtxFFYfXkdneTzVZDjBWR03lYiB5S0suEWKtxSKLwPfHGX0XFpoiZODCEgK/QihV/pdzcBmHhnUu5uU8Q0EhACwFjCHhY2ADVCnT7XBDnDiFgTiTvk3TjoFZsLTKBwsJ3ibFJxFgrMXZSoJc8Ta3W1RJm1SQYQaRuKCJdW3jxnZOs1pHkchWbDEnJpZYhAbhIeP6BmPsjhfv3Jysj0wxJROyuMt5ErK6uTjhBqqqqeu1OKyo2k9V6W8QiSapD0dq+eOju7qZly1YJi2p91K5PbOP27dvJ4ZhEwDQCQsKOlYR/fWS1fomqq6ujLO74/Elrqaiou9fi7vP5BAstr7CY1glMqUVYkA4TUETAYSHGWU1MUrzep4Z4E1bpiTHRQma3T6SCgtkxJ9xJZLHcTIwdFJhFHQFzCLgiwoTFhHnAp2S3P0XAcOGUWULAWnI6TyZsS09oGVHhTsRx06mwcHtUxtqecFX8bt7prO0VtNPj8ZPDsZPc7pLImNBqHKLkPbn5UVpaRsANwsamVtClNQmnooMCE2om4O/CCblJOK2MI2Aq8frFEQSUErA26kQYO7aU6hjlfAhttj29Tp0eTzAS5sfprCa7fYtgTTeVOM6Z0GxdLcrLN1BBwexIOCG9LCNNhtT7+ZuF56fL/NYB4LlkZWQLQ4qXREtOIa5mgkif5ydady/jAr0hii6czlNRymjpJHe7i4XF9bSwWw0Kp5qqKLPWjz/+mLxeb0JLQeni37OYnibAR8DnxNg8ys0ti5rwK1eupdgkfEVFIXI6T1E8s1q14hv5dOWnhcXfG7W4MzaGgL0SZhEWdvIlxFhJRJzI9+8mWrv2PXK7Wygv7yEC3AldAsS2OJ2nhE2C6GR5JiLms9lGUUHBXcI46RbMrYvIbp9ITmcx2WyjojYDsacErcYhqb5XWPiRsNiHadWqysiCb7O1CIzqMgIcBAwTTspBAtqFTcpOgSn9k4BxxJg/cnqJPX2rZbRSP7yejVJtxOJULhCqKFJ3u6foFgjV7/dTRcWThlhGxmNIfd6oIQUUCv82y/zWLPk9CoyxBxljlYyxyrq6OjQ2NqKurg61tbVobm6G1+tFIBDAgQMHEA6HsXv3bgDArl27AAC7d+9GOBzGgQMHEAgE4PV60dzcjNraWojlHT9+HH6/H4cOHUIwGIzk9RHLEP+tqqrCuXPnMGjQILS1teHkyZOor69HfX09Tp48iVAohFAoBIvFgqqqKtjtdmzdWoFweCXuu+8DAMD8+R8hN/dRbNy4CkSE48ePR/pUXV2NESMuxaxZfhQWnsPXv34YOTnA/ffXAihAZWWl7n06evQovvWt+3Dzza9gyJATmDbtJMaOrca4cc9g7dpvIy8vDxs2rIHL5cbixT8HYw1YvfpTAF6Ul/8fli5dgJqaGgSDQQwePBhutxvLlt2PRx+dgssvX4Yrr1yMkSMXYuPGa1FRsQrt7e3guBbcc88HGDhwHR599GYA12HFih+B48pw//03YsyYtzBv3tuYPPkV3HzzbMyefSNKSi7HddcF4HL5MXv2IeTlhXHvvY1grDBCF+l3qq2txVe+cjMuusiKadNOYvz4eowfX48ZM85h6NBi7Nu3D+fOnUv4nXJy1uDuu+/CkCFuXHPNcYwZ04iJE49gxowZKC624dZbj8PhCGDBggPgOBdWrLgHgB2LFvHt+fa3r4fdvh8tLW+hsHAe7rijG5s3r8a77/4MH3/8J6xevQynTp2K+k41NTVYsmQBlix5A0Q+rFxZCSIf7r//Nbjd9+ArXzmMsWMvwrp1MzBhwgMYN+5elJV9jo0bH8Ff/vISPvtsOxYvvhPhcBMWLeLpsWjRLoRCPtx993VwOBzYu3cv3O7RuO66AMaMacRll9Vh8uRajBp1Aa6/fhY+//xz2fnk8/lw330LkZvrwu23H0BBQQDXX+/FqFEX4KqrpuPIkSOyY48voxAPPcQAnMXKlR/ixRcn4/77D2DQoCDuvPMILrkkH7NmPYYrrrgRV1yxBtdf/wIuueQY7rzzNAYNysPixf8L4BasWnUewGCsWvUJAMKCBftgsZzGV796JQYOHIglSxbEHXvx1ojq6mr84AfP4umnZ8HhuBu33z4NxcWPY+bM45gxw48xY7woK/spRoyYj9tu+xwDBgSxYEENGLNjyZJb4PF4eq0RR44ckV0j2tracOTIkcjYk7ajsrISr776FyxceAYDBgQxe/YhuFx+XHddAMXFE3HkyBHN615cyHGpTF0AZoE/tSS73pV5V+0JaYHw/FiZ32oBbEtWRrackHbt2qX4WTV6HSPCo+jRRlG3ZbMNJY5zE8cVk90+nCoqNkf1I5Yu8USHsbtYp1M0td0r22+1ohix7lTTjfAGBNEnM/kTEgmnxzEEjIkYoog78507d6oyHJCG2eH1ZSWy+jKl9JUz0MjECUk0oGFsPq1Y8b4g7qwih2MelZaWUWHhHIGGJwjYJIg3pwn/DhHEeDWCSHdXLx1SbJ1aI3nIhd3iDTbmqhZxqq378cc3pPWElHEmFNUYwAZgnILrYpl31TKkW9BPRHahUEj1O0oniFHe9Xq0UWpVJveMUrrILf5yFlrSfmuhi1bxjZQGcmX01iGdIcbmksXyJbLZhvZi6lrGCxFvybZs2SpZ45dEULIJMlKHlOg90douJ2dclKFFIBCg9eu3CJaJvGWgxXKcgD8TcCfl5j4R0RtaLA6JlZ1xOaCkYyFduaeMmv99giGlcmlgSBcLzy+NuT8CfcyoYf/+/YaVnamka3pALV3UTHgtdNGDlvLJCWOt7Nxksw2liopN1NLS0ouppzpeUtntx3tPK230eu+hh1bIJteLNSe324eTzTaU3O5p5HaPjYRdSsVhORUYXW9VVZUh8z8eQ2L8b30fjDELgG4ATxHRZoXvfAagmYiul9zbAN70+2IiOpPo/auuuopEfUEmEQgEYLVaDa2jo6MDPp9PcJozPs+NHtCDLsn6rYUuetBSroyOjg7BWRcYOXJk3LLTMV60QittUn1v8ODBcDgcisoH0OfmglaIY0Xv+c8Y20VEV/W639cZEmPsKvCnGg7AbwG8AeB3ws/vEFGn8NzfAFxCRGMk794K4H8A/BTAfwCYBOAZAD8ioseS1Z0tDMnr9WL06NGZbkbWwaSLPEy69IZJE3kYRZd4DCl5HInsx8MA7pP8PVe4AN6n6Ljw/xzE9JeI3mGM3QVgE4BF4GNjfBfAVuOaqz8KC2UNAr/wMOkiD5MuvWHSRB7ppkufN/smokVExOJcxyXPzSSiETLvv01ElxPRACK6mIi2EFEonX1IFZ2dnZluQlbCpIs8TLr0hkkTeaSbLn2eIZkAOM78jHIw6SIPky69YdJEHummi/kV+gFyc3Mz3YSshEkXeZh06Q2TJvJIN136vFFDJsEYawBwItPtAOAE0JjpRmQhTLrIw6RLb5g0kYdRdLmEiFyxN02G1A/AGKuUs1j5osOkizxMuvSGSRN5pJsupsjOhAkTJkxkBUyGZMKECRMmsgImQ+ofeDnTDchSmHSRh0mX3jBpIo+00sXUIZkwYcKEiayAeUIyYcKECRNZAZMhmTBhwoSJrIDJkPoYGGNrGGN/YIzVMcaIMbZZ5ft3MMY+ZYx1McZOMMY2MMZyDGpu2sAY4xhj6xhjx4W+7WGMzVH47msCLWOvHxrcbN3AGLuIMfYmY6yVMdbGGHubMXaxwnfzGGPPCWMqwBj7iDF2rdFtTgdSpIvcmCDG2BUGN9tQMMaGM8Z+JHznTqFPIxS+a+hYMRlS38MDANwA/kvti4yxmwC8BeAT8AkKXwCwAXxA2b6OpwFsBvBj8H37GMAbQkR3JWgAMD3m+oH+zdQfjDEbgL+DT155H4B7ABQD2M4YU5IrYBv4cfUkgK8CqAPwf/1g4U2VLgDwGnqPi8O6Nza9GANgHoBmAP9Q+a6xY0UuSZJ5Ze8FgBP+VZWQUHjnUwA7Yu49CeA8gKJM9y0FmrgBnAOfC0t6/28A9ip4/zUApzLdjxT6vxJACMAYyb2RAIIA1iR593LEJKQUxlY1gN9num+ZoovwLAH4Tqb7YQBdOMn/lwr9HKHgPcPHinlC6mMgorCW9xhjFwG4AsDrMT/9EkAu+FNFX8VNAC5A7769DmAiY2xk+puUVnwNwMdEVCPeIKJjAD4AcLuCd7vB5xIT3w0C+A2AmxhjA/RvbtqQCl36LbSuIUjDWDEZ0hcHlwr/7pPeFCZoJ4AJaW+RfrgU/AmpJub+fuFfJX1zM8YaGWNBxthhxtjaPqRbuxQx31XAfiTv+6UAjpGQyDLm3QvAi3f6KlKhi4hljLFzgq7l74yxL+vXvD4Hw8dKf0jQZ0IZxExbzTK/NUt+74soBNBCggxBgrOS3xPhMwC7wE+sPAB3gs8cXAxepJHtKIT8dz0LoCCFd8Xf+ypSoQvAn7D/B8BpAJcAeAzA3xljZUT0rl6N7EMwfKyYDCmDYIzNAvAXBY/uIKKZqVYn/CvnCc1k7mUMGujCkEK/iOiHMbfeYYz5AaxijP0LER1RUk6GobX/KdGuDyCVcXGP5M9/MMb+G/yJ6zsArtGhbX0Nho8VkyFlFh8CGK/gOT3SNibaxVwo+T0boJYuZwEUMMZYzCmpQPK7WvwHgFUArgKQ7Qwp3gm3API7WinOApAzg06FdtmCVOjSC0TUzhj7I4AlqTasj8LwsWIypAxCkMUeSlN1oj7lUgAfiTcF/wMbgANpakdSaKDLfgADAIxGtB5J1BNo6VuiE2W2YT96dIRSTEDyvu8HcCdjzBajG5gA3voyVi/Xl5AKXeIh3inhiwDDx4pp1PAFARGdBLAHwIKYnxaCt5z5U9obpR/+F/yEkOvbPsFwQy3uBr/wfJJi29KB3wOYxhgbJd4QNhozhN+SvZsLYK7kXQuA+QD+TETndG9t+pAKXXqBMTYIwGwAO/VqYB+D8WMl0zbx5qXuAi9Cugu8YxsB+J3w910AbJLn/gagJubdWwGEAbwEYCaA1QC6ADyX6X7pQJdnhb6sEfr2E6Gvt8U8F0UX8Mrq9wAsB/AVALcB+Jnw7k8y3S+FfbeD351WgTdn/hr4zcdRAPkxfQ0CeDLm/d+AF2EtBXAjgDcFWl6Z6b5lii4AygH8FPzGZCZ4x9oq8BufL2e6bzrQRlwzfiKsI8uEv6/L5FjJOGHMS/VAek0YQHLXCMlz7wI4LvP+14VJeQ7ASfCOsTmZ7pcOdMkBH3XihNC3vQDuknkuii7gdQz/JbzXBSAAYDeAhyFxIMz2C7xs/y0AbQDahT6NiHlmBGScqQFYATwP4IxAg50AZma6T5mkC/iNyQfg03d3A2gCf0KYkuk+6USXeGvIu5kcK2b6CRMmTJgwkRUwdUgmTJgwYSIrYDIkEyZMmDCRFTAZkgkTJkyYyAqYDMmECRMmTGQFTIZkwoQJEyayAiZDMmHChAkTWQGTIZkwYcKEiayAyZBMmDDxhQBjbB5jzC9cnYwxkvztZ4z1hVQj/RqmY6wJEya+cGCM3QXg34nImem2mOiBeUIy8YUAY2ymsCNelOm2pAup9pkxtkh4f2Y66kszJoEPEWUii2AyJBMZBWOsgDHWJSxkC1Ms6wrG2GYhorOJfgLG2JeF8bFe5rdJwm/EGLPL/P5bxliIMRabXvtKAJ8a1WYT2mAyJBOZxgIAFwA4htQTn10BYBP4wJCxeA98YMhfplhHX0J/6XOL8O9gmd8elfw/6nfG2MXggwn/nohic/WYJ6QshMmQTGQaSwBsB/BDANcxxkYbUQkRhYmoi4hCRpSfTWCM5QhJ1PpLn1uEf2MZzjDwaVj2yv0O4BHwSUi/H/PeUAAemAwp62AyJBMZA2PsSvCnmp8D+BX4MP/3x3n2AsbY44yxzwQLqVbGWCVj7GHh980AXhUe3y4R47wm/B6l32CM3SL8vSJOfR8xxhoYY7nC3wMYY+sZY/sFEWMLY+wPjLFJCvqptq6BjLHvMMZ2MsYaGWPnGGM1jLFnGWO2mHdFPc8sxthGxpgXfFqAeXI6HTVlS2ARRKEnhOf3Msa+kazfkjo1005Ai/CvHMMhAN+N/Z0xlg8+Z88/iej9mPeuBJ+KoleGU6GfUWNH8tu7kt8WKWy7CRUwU5ibyCSWAOgA8BYRdTDG/gjgPsbYk0QUFh9ijF0A4P/AJ0r7M4DXwS+6E8GLZH4M4G0AQwA8CH6BOii87o1T958B1AG4F8CL0h8YY8UApgF4kYi6BUbxvwBKwYu/fgx+8XsAwAeMsWuJqDJBPxXXJdweBn4xfQvAr8EnSrsOwOPgRU03ydTxr+Czef4UfO6favBp3WOhpex/AZ/sTkzmdj+A/2CM5RHRawn6DR1oByJqZ4wFEc1w7OC/9X+gJ929lGHdD+BC8Ll7YnElgM/INDHOPmQ6UZR5fTEvAHkAzgJ4TXLvdvAL3i0xzz4u3P+uTDmc5P+LhOdmyjw3U/htkeTec8K9CTHPPi3cv1L4e7Xw900xzw0Cn+TwXQX9VVSXcO8CALkyZYjPTpHpczUkGYMT9FlL2ScADJbcHyzcOwvAmqS+lGknPN8E4APJ3+LpaCJ6ksnNF8cE+NPPccgknwTwnwB+GKeezehJVvdazG/vSn5bpKTd5qXuMkV2JjKFrwMoAC+uE/FHAPUAFsc8uwB82uQtsYWQ5CSlAWLd94o3GGMMwEIA+4hI1DEsBL8L38UYc4oX+MX9LwCuYYxZdaoLRHSehNMSY8wiWCI6AfxVeGSqTPk/IaLOZB1OoexWSRmtAP4d/PebmaRKPWgH8GK7QUK7OQArAfwfEVWBPxECPSekrwEYDeAFktGfEdGdRLRKQZ0m0gxTZGciU1gCoAHAqRiT3L8AmMsYcxJRo3CvGLyIpUvPBhDRPsbYpwAWMMbWC8ztWvA77sckj44Hb63WkKA4J4DPdagLAMAYWw7gWwAuRW9db4FMFYcTtC3Vsg/K3Dsg/DsqSXUp005ACwCX8P/bwTOcbwl/i8xSZEirwTOpV5KUaSLLYDIkE2kHY2wkgOsBMMRfSBeCt7wTYZS8/+dCPTeAPyXcCyAE3shCBANQBWBNgnISLbhq6gJjbA14y7A/g9c5nQZwHrz+5zXIGyMlPR2lULYc7ZmS+qAf7VoAiBuXRwHsIaK/AgARhRhjnQAGC4Yy1wL4PhG1K2yjUijtswmNMBmSiUzgfvCT+wH0WFBJ8R3wJ6gfCn8fBjCeMTaAiM4lKFcL0/o1eP3OvYyxDwDcBeAvRFQneeYI+N3531MUESqpCwDuAa//uIWijTtuTqHuVMqeAOD3MffGC/8eTVKfXrRrATCQMTYVwAxIRJ8C2sCfkFaDN9SINR75NoD7AFwG4GMimqmgzotj/r5IWqTShptQDlOHZCKtEOT/iwBUEdErRPRm7AXecupLjLGrhdd+BV6UtEGmPOnC4Bf+LVTaHiJqAPAn8DqtBeD1FD+PeewXAIoQZ5fPGPPoWBfAn5oIkkWPMWYBUKGkniTQUvYyxpjUwm0weHFZC4AdSerThXZCXQy80cEpAL+J+b0VPOOcD+ANIjoZ83sdgGcB/EBhfQAwkzH2BGOsjDH2IoCRkt++whibrKIsEwpgnpBMpBtfAb/T3JbgmbfALzxLAHwC4AUAtwHYIDCpP4M3+74UwFgAs4T3PgEQBvAEY6wAvEn5MSLamaRNPwevCP8++IXtv2N+fwFAGYDnGGM3APg7+B35xQBuFNpyfZI6lNYFAG8CeAbAnxhjb4NnXHeD99NKFVrKbgSwkzH2M/BM4X7wfV+qwJBCL9q1CP/eDOBx6jGRF9EGXhQKyJh6E9HbQCR6g1Iw8Kd1aRsGC/e/AeAc+M2VCZ1gMiQT6YYYHujteA8IBgCHAXyDMbaaiAKMsa+A1x3cDd7PqAu8OOhVyXsnGWOLAawF7zOTC54BJGNI/wPehLkQwCtEFIhpTzdjbDaA5eBFXk8JP50G8E/In3I01SXgOfCL3hLwC/oZAL8F39cDMs+rgZay1wL4MoCHwUc4OAJgARH9OlllOtKuWfi3HcDLMr+Lhg3vURK/JhX4BwAb+I3PfgAPgd9QrQW/8dmnUz0mBJjpJ0yYMPGFAWNsFYA74umQGB/xY5Pw58+JaFFaGmYCgKlDMmHChAkTWQKTIZkwYcKEiayAqUMyYcJEv4dgSSheHGMsD0CYiM5ntmUmpDB1SCZMmOj3iNENidih0B/JRJpgMiQTJkyYMJEVMHVIJkyYMGEiK2AyJBMmTJgwkRUwGZIJEyZMmMgKmAzJhAkTJkxkBUyGZMKECRMmsgImQzJhwoQJE1kBkyGZMGHChImsgMmQTJgwYcJEVuD/A9MxZ7BUmTE5AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -257,7 +257,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The feature map hyperparameters are to be tuned. Different methods are available, see the [documentation](https://mathlab.github.io/ATHENA/feature_map.html). In this tutorial we will use [Bayesian stochastic optimization](https://github.com/SheffieldML/GPyOpt)." + "The feature map hyperparameters are to be tuned. Different methods are available, see the [documentation](https://mathlab.github.io/ATHENA/feature_map.html). In this tutorial we will use [Bayesian stochastic optimization](https://github.com/bayesian-optimization/BayesianOptimization)." ] }, { @@ -330,7 +330,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEQCAYAAAB1OJkXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAu20lEQVR4nO3de3yU5Zn/8c8VQAKGcyKKiCCIlsqKh3ZR66l4qFqUEq12a+taxSrdnlyN2MMC/bltBQ/temArZbtbf7VbKyr6s7bVWg9VwYUsERNTQiSmQCAEQkKaEAhz/f6YCR1jHshk5skz9z3X+/WaF8nMM89c39fkxTX33M/z3KKqGGOMMenIi7oAY4wx7rNmYowxJm3WTIwxxqTNmokxxpi0WTMxxhiTtv5RFxCVwsJCHT9+fNRlGGOMU9asWdOgqkVd78/ZZjJ+/HhWr14ddRmhqa6uZuLEiVGXEQqfs4Hlc53v+UTk/e7uz7mvuURkpog80tTUFHUpoRo5cmTUJYTG52xg+Vzne74gOddMVPVZVb1p2LBhUZcSqtbW1qhLCI3P2cDyuc73fEFyrpnkirw8f99an7OB5XOd7/mC5GbqHDBgwICoSwiNz9nA8rnO93xBrJl4qqWlJeoSQuNzNrB8rvM9XxBrJp4qLCyMuoTQ+JwNLJ/rfM8XxJqJpzZt2hR1CaHxORtYPtf5ni+INRNPTZo0KeoSQuNzNrB8rvM9XxBrJp4qLy+PuoTQ+JwNLJ/rfM8XRHJ1cazTTz9dfT4D3hhjwiAia1T19K7328jEU2vWrIm6hND4nA0sn+t8zxfERibGGGN6zEYmOcbnT0c+ZwPL5zrf8wWxkYkxxpges5FJjlm3bl3UJYTG52xg+Vzne74g1kw8NXny5KhLCI3P2cDyuc73fEGsmXiqtrY26hJC43M2sHyu8z1fEOdXWhSRPwCFgAK7ga+q6tpIi8oCo0ePjrqE0PicDSyf63zPF8SHkclsVT1ZVacB9wH/GW052WHXrl1RlxAan7OB5XOd7/mC9HkzEZGxIvKAiLwpIq0ioiIyPmDbY0TkCRFpEpFmEXlSRMYlb6OqyevvDg2zdpfk5+dHXUJofM4Gls91vucLEsXIZBLwWaAReC1oIxEZDLwEnAhcB3wBOB74o4gc3mXbX4jIJuD/ANeGVLcxxpgAUcyZvKqqowFE5EbgooDt5gDHASeo6obE9m8DVcCXiX+lBYCqfj5pf3cDl4VWvSP27NkTdQmh8TkbWD7X+Z4vSJ+PTFQ11sNNLwdWdjaSxHM3Aq8DVwQ8ZxlwoYiMSq9K9w0fPjzqEkLjczawfK7zPV+QbJ6A/yjwTjf3lwNTAERkhIgclfRYMVAP7OxuhyJyk4isFpHVdXV1NDQ0UFdXx+bNm2lsbKS6upq2tjYqKiqIxWKUlpYCf7s8QmlpKbFYjIqKCtra2qiurqaxsZHNmzfTub+amhpaWlqorKyko6ODsrKyD+yj899169bR3t5OVVUVzc3N1NbWUl9fT319PbW1tTQ3N1NVVUV7e/uBk6C67qOsrIyOjg4qKytpaWmhpqbmQKb169d7l6nzfeqs1adMye/T1q1bvcuU/D4l/+tLpuT3aevWrd5lSn6fgkR6OZXE11JLgQmqWtPlsb3Afao6r8v9dwHzVLW/iBwH/ArIB2LEG8ntPTk02PfLqbS3tzNw4MCoywiFz9nA8rnO93yuXk6lu04nBx5UfU9VP6aqUxOHB19o55jErV+/PuoSQuNzNrB8rvM9X5BsbiaNwMhu7h+ReMwcxNSpU6MuITQ+ZwPL5zrf8wXJ5mZSTnzepKspQEVvdyoiM0XkkaampkNv7DCfL4PtczawfK7zPV+QbJ4z+QZwDzBZVd9L3Dee+KHB81T13nRe2/c5E2OMCUNWzZmIyJUiciVwWuKuSxL3nZu02VKgBlghIleIyOXACuAvwE/6tGAH+fzpyOdsYPlc53u+IJGMTEQk6EVfUdXzkrYbB9wPXEh84v0PwDe6jmJ6w0YmxhiTuqwamaiqBNzO67JdraoWq+pQVR2iqrPSbSS5MmfSeey6j3zOBpbPdb7nC2LL9nqqo6OD/v2dX2GgWz5nA8vnOt/zZdXIxIRvw4YNh97IUT5nA8vnOt/zBbFm4qmxY8dGXUJofM4Gls91vucLknPNJFfmTBoaGqIuITQ+ZwPL5zrf8wXJuWaiqs+q6k3Dhg2LupRQFRQURF1CaHzOBpbPdb7nC5JzzSRX7Nu3L+oSQuNzNrB8rvM9XxBrJp6KxXq6bIx7fM4Gls91vucLYs3EU4MHD466hND4nA0sn+t8zxfEmomndu7sdn0wL/icDSyf63zPFyTnmkmuHM01ZsyYqEsIjc/ZwPK5zvd8QXKumeTK0VwbN26MuoTQ+JwNLJ/rfM8XxC6n4qlYLEZenp+fFXzOBpbPdb7ns8up5Ji1a9dGXUJofM4Gls91vucLYiMTY4wxPWYjkxzj8wI9PmcDy+c63/MFybmRiYjMBGZOmjRpTlVVVdTlGGOMU2xkkpArR3OVlpZGXUJofM4Gls91vucLknMjk06+z5n4fESJz9nA8rnO93w2MskxlZWVUZcQGp+zgeVzne/5glgz8dSECROiLiE0PmcDy+c63/MFsWbiqS1btkRdQmh8zgaWz3W+5wtizcRTI0eOjLqE0PicDSyf63zPFyTnmkmuXOixtbU16hJC43M2sHyu8z1fkJxrJrlyaLDPR5P4nA0sn+t8zxckN1PngAEDBkRdQmh8zgaWz3W+5wtizcRTLS0tUZcQGp+zgeVzne/5glgz8VRhYWHUJYTG52xg+Vzne74g1kw8tWnTpqhLCI3P2cDyuc73fEGsmXhq0qRJUZcQGp+zgeVzne/5glgz8VR5eXnUJYTG52xg+Vzne74gdqFHY4wxPZaRCz2KSJ6I9O9y38Ui8s8ickq6RZrM8XmBHp+zgeVzne/5gqQ0MhGRXwHtqvrFxO83Aw8nHt4HXKaqL2a8ygyyxbGMMab3MnUJ+unAb5J+vx34KTAMeBL4dq8r7CO5cga8z5+OfM4Gls91vucLkurIpA24SFVfE5FJwHpgmqq+LSIXAY+pqhMHWduciTHGpC5TI5NmYFTi5/OABlV9O/H7fiC/1xWajFq3bl3UJYTG52xg+Vzne74g/Q+9yQe8AcwTkQ7gG3zwK69JQG6erZOFJk+eHHUJofE5G1g+1/meL0iqI5MSYCTwDPFRyIKkx64G3sxMWSZdtbW1UZcQGp+zgeVzne/5gqQ0MlHVKmCyiIxS1R1dHv46sDVjlZm0jB49OuoSQuNzNrB8rvM9X5BenQGvqjtEpEBEjhWRAYn71qnq9syWZ3pr165dUZcQGp+zgeVzne/5gqTcTETk0yJSCjQB1cDUxP0/FZF/yHB9JgUtLS3Mnz+foqIixo8fT1FREfPnz/fuktj5+X4f52H53OZ7viCpngE/C1gBNAB3dHn+RuC6jFVmUtLS0sL06dNZtGgRDQ0NqCoNDQ0sWrSI6dOne9dQjDHZJdWRyXzgZ6p6EfCjLo+9A5yUiaJM6hYvXkx1dTV79uz5wP179uyhurqaxYsXR1RZ5nXN6BvL5zbf8wVJtZl8BPhV4ueuZzs28rdzUEwfe/jhhwP/iPfs2cOSJUv6uKLwDB8+POoSQmX53OZ7viC9OWkx6Az38YBNwEdkx46uB9el9rhLtm3bFnUJobJ8bvM9X5BUm8kLwJ0iMjzpPhWRgcA/Ac9nqjCTmlGjDj4o9OnT0rhx46IuIVSWz22+5wuSajP5NnAk8GfiF3hUYB6wFhjLB09izEoiMlNEHmlqaoq6lIyaO3fuQY8i2b17Nz/+8Y/Zv39/H1YVjvXr10ddQqgsn9t8zxck5cWxRGQssBC4GDgC2AH8FvgXVf1LxisMiW8Xeuw8mqvrJPzAgQMZOHAgzc3NAEyfPp1ly5YxZcqUqEo1xjgsUxd6RFU3qeoNqjpWVQ9T1aNU9XqXGomPCgoKWLlyJSUlJRQVFSEiFBUVcccdd7B582ZWrFjBmDFjWLlyJdOmTeN73/see/fujbrsXvH9Et+Wz22+5wtiy/bmkKamJkpKSnjkkUcAOOmkk1i2bBkf//jHI67MGOOKTC3b+x+HuC3LXMkmHd19Oho2bBg/+clPeOmll5g4cSLvvPMOZ5xxBrfeeit//etfI6iyd3z/5Gf53OZ7viCpLo5Vw4fPLxkJDAF2AbtU9bhMFRemXByZJGttbWXBggXce++9xGIxJkyYwNKlS5kxY0bUpRljslhGRiaqOl5VJ3S5DSO+UNZWoDgz5Zp0lZWVHfTxwYMHs2jRIlatWsXf/d3fsXHjRi644AJuuOEGGhsb+6jK3jlUNtdZPrf5ni9IxuZMRGQOcJ2qfiIjOwyZ7yOTjo4O+vfv2QoD+/btY9GiRQcm5Y888kgeeughZs+eHXKVvZNKNhdZPrf5ni9jR3MdxHvAKRncn0nDhg0berztgAED+Pa3v01ZWRlnnXUWW7dupbi4mCuvvJKtW7NviZpUsrnI8rnN93xBMtJMRKQ/8I/Ysr1ZY+zYsSk/58QTT+TVV1/lwQcfpKCggOXLl/ORj3yEn/3sZ2TTUX+9yeYSy+c23/MFSfVorpe6uf0J2AL8A3BPKFWalDU0NPTqeXl5eXzlK1+hvLycSy65hF27dvGlL32Jiy66iPfeey/DVfZOb7O5wvK5zfd8QVIdmeQB0uW2G3gSmKGqSzNbnumtgoKCtJ4/btw4nnvuOR599FFGjRrFiy++yNSpU7n//vsjvyRLutmyneVzm+/5gqR6NNd5qnp+l9slqnqzqr4cUo2mF/bt25f2PkSEa6+9loqKCq655hpaW1u59dZbOeuss3jnnXcyUGXvZCJbNrN8bvM9X5BMTsCbLBKLxTK2ryOOOIJf/vKXPPPMMxx99NGsWrWKU089lQULFtDe3p6x1+mpTGbLRpbPbb7nC3LIQ4NF5Iup7FBVf55WRX3E90ODGxsbGTFiRMb329TUxLx58/j3f/93AKZMmcKyZcuYPn16xl8rSFjZsoXlc5vv+YIODe7JwdD/mcLrKOBEM/Hdzp07Q/mDHjZsGEuWLOGaa65hzpw5VFRUcOaZZ/K1r32Nu+66q0++Lw4rW7awfG7zPV+QnoxMjk1lh6r6floV9RHfRyZtbW0MGjQo9NdYuHAh99xzD/v372f8+PE88sgjXHjhhaG/btjZomT53OZ7vl6ftKiq76dyC6f87olIvog8LSLvishaEfmdiDhxbbCwbdy4MfTXGDRoED/84Q956623mDZtGjU1NVx00UVcf/317Ny5M7TX7YtsUbJ8bvM9XxCnL0EvIvnAuar6u8Tv/wTMVtVPHuq5vo9MYrEYeXl9d3zFvn37uPfeew9Myo8ePZoHH3yQ4uJiRCSjr9XX2fqa5XOb7/kydjkVEblYRJ4SkQoRea/rrQfPHysiD4jImyLSKiIqIuMDtj1GRJ4QkSYRaRaRJ0XkwALLqrqns5EkrARsZAKsXbu2T19vwIABzJs3j7KyMs4++2y2bdvGVVddxezZs9myZUtGX6uvs/U1y+c23/MFSfUM+EuB3wCDgROBSqAWOAaIAa/0YDeTgM8CjcBrB3mtwcBLide5DvgCcDzwRxE5POBpXwVW9CSL70499dRIXveEE07g5ZdfZsmSJQwZMoSnn36aKVOm8NOf/jRjl2SJKltfsXxu8z1fkFRHJt8FHgIuTfz+HVU9D/go0A94vgf7eFVVR6vqpcCvD7LdHOKjjFmq+rSqrgAuB44Fvtx1YxG5E5gM3NnDLF6LcoGevLw8br75ZsrLy7nssstoampizpw5XHDBBVRXV6e9f98XH7J8bvM9X5BUm8mJwLPERyFK4tBiVV0PLCDebA5KVXt6Rs/lwEpVPXAJTlXdCLwOXJG8oYjcRnwtlUtUtbWH+/faaaedFnUJHHPMMTz77LM89thjFBYW8tJLLzF16lTuvfdeOjo6er3fbMgWJsvnNt/zBUm1mcSADo1/X7EdGJf02BZgYqYKIz7a6e6aHeXAlM5fRORW4HPAhaq662A7FJGbRGS1iKyuq6ujoaGBuro6Nm/eTGNjI9XV1bS1tVFRUUEsFqO0tBT42yeN0tJSYrEYFRUVtLW1UV1dTWNjI5s3b6ZzfzU1NbS0tFBZWUlHR8eBhXI699H577p162hvb6eqqorm5mZqa2upr6+nvr6e2tpampubqaqqor29nXXr1nW7j7KyMjo6OqisrKSlpYWampoDmf70pz9lRabt27czY8YMfv/733PVVVfR1tbGbbfdxrRp03j77bdTytT5Pr3yyivevE/d/e2tWbPGu0zJ79MLL7zgXabk92nNmjXeZUp+n4KkumzvG8BSVf2ZiPw/YDhwFdABPAqMU9UpB9lF1/3dCCwFJqhqTZfH9gL3qeq8LvffBcxT1f4iMhb4C/G1VHYnNuno7kiDruxormg899xz3HzzzWzatIn+/fszb948vvOd7zBw4MAe7yNbs2WK5XOb7/kydTTXL4CPJH6eT3z0sIn4kr2fBP4lnSK70V2nO3CcqapuUlVR1YmqOi1xO2QjyQWVlZVRl9Ctyy67jPLycubOnUtHRwd33XUXp5xyCm+88UaP95Gt2TLF8rnN93xBUr1q8EOqWpL4eQ0wlfhk+DeBaar6RAZrawRGdnP/iMRj5iAmTJgQdQmBhg4dykMPPcSrr77K5MmTeffdd/nEJz7B1772NVpaWg75/GzOlgmWz22+5wuS1lgsMTL4qar+m6pWZKqohHLiI5+upgC9fi0RmSkijzQ1NfW6MBdk+tyOMJx99tmUlZVx5513kpeXxwMPPMBJJ53E7373u4M+z4Vs6bB8bvM9X5BUzzMpFZFviMjosApK8gwwPfnyKImTG89KPNYrqvqsqt40bNiw9CvMYiNHdjeoyz75+fl8//vfZ/Xq1Zx66qm8//77fOpTn+K6665jx44d3T7HlWy9Zfnc5nu+IKmOTLYBi4C/iMhvROSaxCVNUiIiV4rIlUDnMXSXJO47N2mzpUANsEJErhCRy4mfkPgX4CepvmauaW116wjpadOmsWrVKu6++27y8/P5+c9/zpQpU3j88cc/dLKja9lSZfnc5nu+IKnOmVwCjAVKgCOAx4BtIrJMRM5PYVe/TtxuTvz+cOL3hUmv9Vfik/rriR8p9gtgI/BJVT30F+s5zsWjSfr3709JSQlvv/025557LvX19Vx99dXMmjWL9evXM3/+fIqKijjmmGMoKipi/vz5PZpjcY2L710qLJ+f0rrQo4h8hPhlTv6B+CVVNqlqSpes72siMhOYOWnSpDlVVVVRlxOahoYGCgsLoy6j12KxGEuXLqWkpITm5mby8vLo16/fB5ZEzc/PZ+LEiaxcudKrdbddf+8OxfK5LWMXekymqu8C3wO+TfykxbHp7K8v5Mqcieuf2PPy8vjyl79MeXk5xx9/PLFY7ENra+/Zs4fq6moWL14cUZXhcP29OxTL56eerLTYLRH5JPFRyWygAHgL+EGG6jJp8uWT0dixY2lsDD4SfM+ePdx9993s3r2bwsJCioqKKCwsPHArKipixIgR9OvXrw+rTo8v710Qy+enlJqJiJwEXEv8a62jgfeBHwOPqqq/3xk5aNOmTZx44olRl5ERQUd1dWpvb+f+++8PfFxEGDlyZGCz6e73goKCjK/DcjAtLS0sXryYhx9+mB07djBq1Cjmzp3L7bff7tVXeODX32Z3fM8XJNXLqcSAJuKT5Y+qauAl5LNVrsyZdHR00L9/rweeWaWoqIiGhobAx4cMGcJ3v/tdGhoaDty2b99+4OeDjWyCHHbYYSk1n1GjRqV0SZhkLS0tTJ8+nerqavbs2XPgfl/nhHz62+yO7/mC5kxSTXw18IyqtmemrL6nqs8Cz55++ulzoq4lTOXl5Zx88slRl5ERc+fOZdGiRR/4j7ZTfn4+3/zmN7n99tsDn9/R0cGOHTsCm01397W2trJly5aUTkAbMmTIQZtP18dGjBhBXl4eixcv/lAjgQ/OCS1cuDDgVd3j099md3zPF8TpZXvT4fuFHn0SxSf31tbWgzab7n7fv39/Sq+Rl5fHqFGj2Llz50GfW1RURH19fbqRjMmIoJFJys0kcUb6Z4lffr7rCYuqqjf0uso+5HszWbNmjVfrKnTOKSxZsuTAoZe33HJL1swpxGIxmpqaUmpAu3bt6tG+RYT9+/f36RxOmHz72+zK93wZaSYicgXx+ZI8oB7o+nWXqqoTa7D73kxM9tu3bx87duxgypQph5zXGTduHLNnz6a4uJgzzzwzZ0+MM9HL1HkmdwEvA0ep6hhVndDllvWNJFcu9Ojz0qG+ZBswYABHHnkkX/3qV8nP7/6qRP369aOgoIDa2lp+9KMfcfbZZ3P00Uczd+5c/vCHP6S1YmVUfHn/gvieL0iqI5O/Ap9R1d+HV1LfsJGJyRaHmhN64403KC8vZ/ny5SxfvpyampoD24waNYpZs2ZRXFzMjBkzOOywwyJIYHJJpkYmlcCozJRkwtS5jKePfMtWUFDAypUrKSkpoaioCBGhqKiIkpISVq5cydChQznjjDO45557eO+991izZg3f+ta3OOGEE9ixYwfLli3j0ksv5YgjjuALX/gCTz/99EGXV42ab+9fV77nC5LqyGQG8CPgClV9L6yi+oLvI5P29vZen/eQ7XzOBj3Pp6pUVFTwxBNPsHz58g/8J3b44Ydz6aWXUlxczKWXXsqQIUPCLDkl9v65LVMT8K8BE4mPTqqAnV02UVU990NPzEK+N5OqqiqOP/74qMsIhc/ZoPf5qqqqDnwVlvy3PXDgQC6++GKKi4uZOXMmI0aMyGS5KbP3z22ZaiYv0/267AeoaiqXoo+M782kubmZoUOHRl1GKHzOBpnJ9/777/Pkk0+yfPly3njjjQNrwvTv358ZM2ZQXFzMrFmzKCoqykTJKbH3z20ZO8/EdblyOZXa2lrGjRsXdRmh8DkbZD5fXV0dTz31FMuXL+eVV145cIJkXl4e55xzDsXFxcyePZsxY8Zk7DUPxt4/t1kz6cL3kUl9fT1HHHFE1GWEwudsEG6+hoYGVqxYwfLly3nxxRc/cFn/M844g+LiYoqLixk/fnworw/2/rkuY+uZiMjRInKfiKwWkY2JKwmTWBv+7zNRrDEmHIWFhdxwww385je/ob6+nkcffZRZs2aRn5/Pm2++yW233caECRM4/fTT+cEPfsD69eujLtk4IqVmIiIfBdYRX8dkC/FLqnQe2H4s8PWMVmd6rbuLIvrC52zQd/mGDx/Otddey1NPPcX27dt5/PHHufrqqykoKPjA4cdTp05lwYIFrFu3jkx8k2Hvn59SnYD/LTAEuBjYA+wFTlfVUhG5CrjbhbPgwf+vuXyeBPQ5G0Sfr62tjRdeeIEnnniCZ555huSrRRx//PEHvgo77bTTenW9sKjzhc33fJn6musTwA9VtYUPH9W1DTiyl/WZDNu2bVvUJYTG52wQfb5BgwZx+eWX8/Of/5z6+nqef/55brzxRgoLC6mqquKHP/whH/vYx5gwYQK33norr7/+OrFYrMf7jzpf2HzPFyTVkUkz8HlVfVZE+gH7+NvIZDawVFWdOEPe95GJzydO+ZwNsjdfR0cHr732GsuXL+fJJ5+krq7uwGNHHXUUn/nMZyguLuacc8456OJQ2ZovU3zPl6mRyVvA9QGPfRZ4PdXCTDh8njj1ORtkb77+/ftz/vnn8+CDD7Jp0yZef/11br31Vo499ljq6up4+OGHmTFjBkcddRQ33ngjzz//PHv37gXi1x+bP38+RUVFDBo0iKKiIubPn09LS0vEqTIvW9+/sKU6MjkXeBH4I/AYsAy4E/gocA1wjqquCqHOjMmV80yM6SuqSmlp6YGz75P/Mx02bBif+tSneOONN9i+fXtOLEvsu6CRCaqa0g24jPilVGJJt/eAS1LdV5S30047TX22evXqqEsIjc/ZVN3OF4vFdN26dbpgwQI96aSTlPjcauDtsMMO06985StaX1+ve/fujbr8jHD5/esJYLV2839qr09aFJFJwBHADlX9c692EiHf50yMyQbr16/nlFNOobW1tUfbH3744YwYMYLhw4czYsSID/x8qPsGDx4c2WqUnSuBPvzww+zYsYNRo0Yxd+7crFkJNJPsDPgufG8mPi8d6nM28C9fXl7eIc9PGTlyJLt27UrpqLCuBgwY8KEm010D6u7xYcOG0a9fv1697qHWo/Hta7xMXejxiwd5OAY0Af+rqptSL7Fv+d5MjMkWRUVFNDQ0HPTx+vp6VJXdu3eza9cuGhsbaWxsPPBzT+5Ldw2XoUOHpjwaGj58OA8++CD33Xdftycr5ufnU1JSwsKFC9OqLZtkqpnE+Nv5JcnjyeT7YsCvgOtVdW/vyg2f782krKyMk08+OeoyQuFzNvAv3/z581m0aFHo/9m2t7f3uhE1NTVl5Oz+7nQ2S19kqpmcAfwCeBZ4gviJiqOJHxb8aWAucBKwEPiRqn4r/dLD4Xsz6ejoOOix/i7zORv4l8+Fr4H279/P7t27e9WIDnWSYl5e3oErNfsgqJmk+hd7G/DfXZrEeuA1EdkN3KSqnxGRocDngaxtJr7bsGEDJ554YtRlhMLnbOBfvs5liRcvXsySJUtoaGigsLCQW265JWsmqPv168fw4cMZPnw4EyZMSOm5h/oab9QoJ87jTluqJy1eCPwh4LGXgBmJn18Fju5tUSZ9Y8eOjbqE0PicDfzMV1BQwMKFC6mvr6e5uZn6+noWLlyYFY0kXXPnziU/P7/bx/Lz87nlllv6uKJopNpM9gJBh5mclni8c79/7W1RJn0H+6TkOp+zgeVzze23387EiRM/1FA6v8a7/fbbI6qsb6XaTH4NLBSRfxaRY0VkUOLf24AFxCfeAaYBWXnuiYjMFJFHkq+E6iMfPvEF8TkbWD7XdH6NV1JSQlFRESJCUVERJSUlWTEf1FdSnYAfBCwFPtfNw48Bc1R1j4hcBuxW1VczU2bm+T4BX1dXx1FHHRV1GaHwORtYPtf5ni8jE/Cq2gZcKyLfA/4eOAqoA1ap6vqk7Z5Ls16TpnRO/sp2PmcDy+c63/MF6dXxh4nGkZuXxnTE4MGDoy4hND5nA8vnOt/zBTnknImIjBORAUk/H/QWfsmmJ3bu3Bl1CaHxORtYPtf5ni9IT0YmG4EziK9lUsOHV1jsqncXuDEZNWbMmKhLCI3P2cDyuc73fEF60ky+BFQn/ZybV4Z0zMaNG5kyZUrUZYTC52xg+Vzne74gGbtqcGIZ32Gq6sQYz/ejuWKxGHl5qR757Qafs4Hlc53v+Xq9bK+I7BSRU5N+FxF5RkSO67Lp6cD29Es1mbB27dqoSwiNz9nA8rnO93xBDjkySVwpeLqqvpX4vR+wDzhdVUuTtvt74A1VdWLOxPeRiTHGhKHXIxPjpjVr1kRdQmh8zgaWz3W+5wtizcRTPq3U15XP2cDyuc73fEGsmXiqtLT00Bs5yudsYPlc53u+ID2dMykGyhJ39SN+EccrgPKkTU8BHs/2ORMRmQnMnDRp0pyqqqqoywmNz0eU+JwNLJ/rfM+X7pzJE0BV4laZuO/ppPuqiF9ROOup6rOqetOwYcOiLiVUlZWVh97IUT5nA8vnOt/zBenJSYvXh16FybhUV4tzic/ZwPK5zvd8QQ7ZTFT1v/qiEJNZW7ZsYeLEiVGXEQqfs4Hlc53v+YL4+8Vejhs5cmTUJYTG52xg+Vzne74g1kw81draGnUJofE5G1g+1/meL4g1E0/5fDSJz9nA8rnO93xBcjN1DhgwYEDUJYTG52xg+Vzne74g1kw81dLSEnUJofE5G1g+1/meL4g1E08VFhZGXUJofM4Gls91vucLYs3EU5s2bYq6hND4nA0sn+t8zxfEmomnJk2aFHUJofE5G1g+1/meL4g1E0+Vl5cfeiNH+ZwNLJ/rfM8XJGPL9rrGFscyxpjU2eJYOcbnBXp8zgaWz3W+5wtiIxNjjDE9ZiOTHOPzpyOfs4Hlc53v+YI4PzIRkW8B1wHHA7NV9emePM9GJsYYkzqfRyZ/AC4FXo26kGyybt26qEsIjc/ZwPK5zvd8Qfq8mYjIWBF5QETeFJFWEVERGR+w7TEi8oSINIlIs4g8KSLjkrdR1VWqWt0nxTtk8uTJUZcQGp+zgeVzne/5gkQxMpkEfBZoBF4L2khEBgMvAScS/xrrC8S/yvqjiBzeB3U6rba2NuoSQuNzNrB8rvM9X5CeLNubaa+q6mgAEbkRuChguznAccAJqrohsf3bxNeb/zJwXx/U6qzRo0dHXUJofM4Gls91vucL0ucjE1WN9XDTy4GVnY0k8dyNwOvAFWHU5pNdu3ZFXUJofM4Gls91vucLks0T8B8F3unm/nJgSh/X4pz8/PyoSwiNz9nA8rnO93xBsrmZjCQ+r9LVTmBE5y8i8h0R2QScAfxURDaJyJHd7VBEbhKR1SKyuq6ujoaGBurq6ti8eTONjY1UV1fT1tZGRUUFsViM0tJS4G/HjZeWlhKLxaioqKCtrY3q6moaGxvZvHkznfurqamhpaWFyspKOjo6KCsr+8A+Ov9dt24d7e3tVFVV0dzcTG1tLfX19dTX11NbW0tzczNVVVW0t7cfODqk6z7Kysro6OigsrKSlpYWampqDmRqaGjwLlPn+1RXV+ddpuT3SVW9y5T8PlVVVXmXKfl9UlXvMiW/T0EiPc8kMWeyFJigqjVdHtsL3Kuqd3a5/1+BO1Q1rfke388zqa2tZdy4cYfe0EE+ZwPL5zrf87l4nkkj8dFJVyPofsRikgwfPjzqEkLjczawfK7zPV+QbG4m5cTnTbqaAlT0dqciMlNEHmlqaup1YS7Ytm1b1CWExudsYPlc53u+INncTJ4BpovIcZ13JE5uPCvxWK+o6rOqetOwYcPSrzCL+TzM9jkbWD7X+Z4vSCTNRESuFJErgdMSd12SuO/cpM2WAjXAChG5QkQuB1YAfwF+0qcFO2j9+vVRlxAan7OB5XOd7/mCRDIBLyJBL/qKqp6XtN044H7gQkCIX4frG10n63vD9wl4Y4wJQ1ZNwKuqBNzO67JdraoWq+pQVR2iqrPSbSS5Mmfi82Wwfc4Gls91vucL4vwl6HvLRibGGJO6rBqZmPD5/OnI52xg+Vzne74gNjIxxhjTYzYyyTGdl2jwkc/ZwPK5zvd8QXJuZCIiM4GZkyZNmtN5jSAfdXR00L9/FCsMhM/nbGD5XOd7PhuZJOTKSYsbNmw49EaO8jkbWD7X+Z4vSM41k1wxduzYqEsIjc/ZwPK5zvd8QayZeKqhoSHqEkLjczawfK7zPV8QayaeKigoiLqE0PicDSyf63zPFyTnmkmunAG/b9++qEsIjc/ZwPK5zvd8QXKumeTKBHwsFou6hND4nA0sn+t8zxck55pJrhg8eHDUJYTG52xg+Vzne74g1kw8tXPnzqhLCI3P2cDyuc73fEGsmXhqzJgxUZcQGp+zgeVzne/5glgz8dTGjRujLiE0PmcDy+c63/MFscupeCoWi5GX5+dnBZ+zgeVzne/57HIqCblyNNfatWujLiE0PmcDy+c63/MFybmRSSe7BL0xxqTORiY5xucFenzOBpbPdb7nC2IjE2OMMT1mI5McU1paGnUJofE5G1g+1/meL4iNTDzl8xElPmcDy+c63/PZyCQhVy70WFlZGXUJofE5G1g+1/meL4iNTDzV1tbGoEGDoi4jFD5nA8vnOt/z2cgkx2zZsiXqEkLjczawfK7zPV8QayaeGjlyZNQlhMbnbGD5XOd7viDWTDzV2toadQmh8TkbWD7X+Z4viDUTT/l8NInP2cDyuc73fEFyM3UOGDBgQNQlhMbnbGD5XOd7viA5ezSXiGwH3o+6jhAVAg1RFxESn7OB5XOd7/mOVdWirnfmbDPxnYis7u7wPR/4nA0sn+t8zxfEvuYyxhiTNmsmxhhj0mbNxF+PRF1AiHzOBpbPdb7n65bNmRhjjEmbjUyMMcakzZqJMcaYtFkz8YSIjBWRB0TkTRFpFREVkfFR15UpInKliCwXkfdFpE1E/iwiPxCRIVHXli4RuVhEXhKRrSLSLiKbRORxEZkSdW1hEZHfJv5G74q6lnSJyHmJLF1vu6KurS/1j7oAkzGTgM8Ca4DXgIuiLSfjbgNqgW8Bm4BTgAXA+SJypqrGIqwtXSOJv28PA9uBccA8YKWITFVVr06uFZHPASdHXUcIvgb8T9LvHVEVEgVrJv54VVVHA4jIjfjXTGaq6vak318RkZ3AfwHnAS9FUlUGqOovgV8m3ycibwGVwJXAvVHUFQYRGQ7cD3wTeCzaajLuXVVdGXURUbGvuTzh+CfzQ+rSSDp1fgo8ui9r6SM7Ev/ui7SKzFsElCcaqPGINRPjsnMT/74baRUZIiL9ROQwETke+AmwFfjviMvKGBH5BPBFYG7UtYTkFyKyX0R2iMhjIjIu6oL6kn3NZZwkIkcD3wNeVFVf1l9eBZyW+HkD8ElVrY+wnowRkQHEG+Q9qvrnqOvJsCbiX0W+AjQTn8/7FvCmiJziy3t4KNZMjHNEpABYQXyC8/qIy8mkLwBDgeOIH3Dwgoh8QlVrIq0qM+4ABgH/GnUhmaaq/wv8b9Jdr4jIq8BbxCflvxNJYX3MmolxiojkA88Q/w/3XFXdFHFJGaOqnV/XrRKR54Ea4kd13RxZURmQ+Lrn28CNwEARGZj08MDEpPxuVd0fRX1hUNVSEVkPfCzqWvqKzZkYZyS+KlkOfBy4VFXXRVxSaFR1F/GvuiZFXEomHAfkA/8XaEy6QXwE1ghMjaa0UAmQM9erspGJcYKI5AG/AGYAl/l+CKaIjAZOJJ7ZdWuB87u5/4/EG8wy4o3TGyJyOjAZeDzqWvqKNROPiMiViR87J3EvSawouV1VX4morEx5CLiK+HfufxWR6UmPbXL56y4ReQooBd4mPoE7mfh5GB14cI5JYpT1ctf7RQTgfVX90GMuEZFfABuJv4e7iE/A3wlsBh6IrrK+ZVcN9oiIBL2Zr6jqeX1ZS6aJSA1wbMDDC1V1Qd9Vk1kicgfxqxdMBA4D/kL8P98feDL53q3E3+u/qqrTE9QicifwOeJ/n4OJH9L9PDBfVeuirK0vWTMxxhiTNpuAN8YYkzZrJsYYY9JmzcQYY0zarJkYY4xJmzUTY4wxabNmYowxJm3WTIxJk4j8Y2KZ1oxc+kREXhaRlzOxL2P6ijUTY4wxabNmYowxJm3WTIzJsMTXVH8SkQtEpFREWkXkHRGZ1c2214hIpYi0i0i5iHwmYJ+FIrJERDYntq0UkZuSHj9KROoT1/lKft5Nia/gLst4UGOSWDMxJhwTgR8D9wGzgTrgieR5FRG5AHgMqEpsszjxnBOSdyQiQ4HXgcuABYl/nwWWiMhXARLXgLoemCUiNyee9xHgfuABVX0urKDGgF012JiwFALnqGoVgIiUEm8onwW+n9hmIVAJXKGqscR27wIrgeSlbb9O/CKCUzv3B7yYWFRqvogsUdUOVX1ORP4NuE9E/gf4D+KXdi8JMacxgI1MjAlLVdJ//CTWAa8HxgGISD/iq/A90dlIEtutIr7CYrJPEV8ffqOI9O+8Ab8DRgFTkrYtAdYTH8kcD3xOVfdkOJsxH2LNxJhw7OzmvnbiKw5CfOQyANjWzXZd7zsCOAfY1+X268Tjozo3VNV24FfAQOD3qlrRy/qNSYl9zWVMNBqIN4TR3Tw2Gng/6fcdxEc1Xw/Y14GvxETko8B3gdXAFSJyhaquyEjFxhyEjUyMiYCq7gf+B7gysSQxACLy98D4Lpv/lvgSvrWqurqb2+7Ec/OBXxKfhzkLeBJYJiJjwk9kcp01E2OiM594k3haRC4TkX8kvmb41i7b3U98ZPKaiNwsIueLyKdF5DYRSR51LCZ+FNnnVHUvMAdoAx5NbljGhMH+wIyJiKq+CHye+KHATwK3A9/gg0dyoapNwJnAb4A7iE+8/wdwBfBHABH5NPBPwNdV9c+J5+0ErgXOS+zbmNDYsr3GGGPSZiMTY4wxabNmYowxJm3WTIwxxqTNmokxxpi0WTMxxhiTNmsmxhhj0mbNxBhjTNqsmRhjjEnb/wdSi7ym0rE9vgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEQCAYAAAB1OJkXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAu20lEQVR4nO3de3yU5Zn/8c8VQAKGcyKKiCCIlsqKh3ZR66l4qFqUEq12a+taxSrdnlyN2MMC/bltBQ/temArZbtbf7VbKyr6s7bVWg9VwYUsERNTQiSmQCAEQkKaEAhz/f6YCR1jHshk5skz9z3X+/WaF8nMM89c39fkxTX33M/z3KKqGGOMMenIi7oAY4wx7rNmYowxJm3WTIwxxqTNmokxxpi0WTMxxhiTtv5RFxCVwsJCHT9+fNRlGGOMU9asWdOgqkVd78/ZZjJ+/HhWr14ddRmhqa6uZuLEiVGXEQqfs4Hlc53v+UTk/e7uz7mvuURkpog80tTUFHUpoRo5cmTUJYTG52xg+Vzne74gOddMVPVZVb1p2LBhUZcSqtbW1qhLCI3P2cDyuc73fEFyrpnkirw8f99an7OB5XOd7/mC5GbqHDBgwICoSwiNz9nA8rnO93xBrJl4qqWlJeoSQuNzNrB8rvM9XxBrJp4qLCyMuoTQ+JwNLJ/rfM8XxJqJpzZt2hR1CaHxORtYPtf5ni+INRNPTZo0KeoSQuNzNrB8rvM9XxBrJp4qLy+PuoTQ+JwNLJ/rfM8XRHJ1cazTTz9dfT4D3hhjwiAia1T19K7328jEU2vWrIm6hND4nA0sn+t8zxfERibGGGN6zEYmOcbnT0c+ZwPL5zrf8wWxkYkxxpges5FJjlm3bl3UJYTG52xg+Vzne74g1kw8NXny5KhLCI3P2cDyuc73fEGsmXiqtrY26hJC43M2sHyu8z1fEOdXWhSRPwCFgAK7ga+q6tpIi8oCo0ePjrqE0PicDSyf63zPF8SHkclsVT1ZVacB9wH/GW052WHXrl1RlxAan7OB5XOd7/mC9HkzEZGxIvKAiLwpIq0ioiIyPmDbY0TkCRFpEpFmEXlSRMYlb6OqyevvDg2zdpfk5+dHXUJofM4Gls91vucLEsXIZBLwWaAReC1oIxEZDLwEnAhcB3wBOB74o4gc3mXbX4jIJuD/ANeGVLcxxpgAUcyZvKqqowFE5EbgooDt5gDHASeo6obE9m8DVcCXiX+lBYCqfj5pf3cDl4VWvSP27NkTdQmh8TkbWD7X+Z4vSJ+PTFQ11sNNLwdWdjaSxHM3Aq8DVwQ8ZxlwoYiMSq9K9w0fPjzqEkLjczawfK7zPV+QbJ6A/yjwTjf3lwNTAERkhIgclfRYMVAP7OxuhyJyk4isFpHVdXV1NDQ0UFdXx+bNm2lsbKS6upq2tjYqKiqIxWKUlpYCf7s8QmlpKbFYjIqKCtra2qiurqaxsZHNmzfTub+amhpaWlqorKyko6ODsrKyD+yj899169bR3t5OVVUVzc3N1NbWUl9fT319PbW1tTQ3N1NVVUV7e/uBk6C67qOsrIyOjg4qKytpaWmhpqbmQKb169d7l6nzfeqs1adMye/T1q1bvcuU/D4l/+tLpuT3aevWrd5lSn6fgkR6OZXE11JLgQmqWtPlsb3Afao6r8v9dwHzVLW/iBwH/ArIB2LEG8ntPTk02PfLqbS3tzNw4MCoywiFz9nA8rnO93yuXk6lu04nBx5UfU9VP6aqUxOHB19o55jErV+/PuoSQuNzNrB8rvM9X5BsbiaNwMhu7h+ReMwcxNSpU6MuITQ+ZwPL5zrf8wXJ5mZSTnzepKspQEVvdyoiM0XkkaampkNv7DCfL4PtczawfK7zPV+QbJ4z+QZwDzBZVd9L3Dee+KHB81T13nRe2/c5E2OMCUNWzZmIyJUiciVwWuKuSxL3nZu02VKgBlghIleIyOXACuAvwE/6tGAH+fzpyOdsYPlc53u+IJGMTEQk6EVfUdXzkrYbB9wPXEh84v0PwDe6jmJ6w0YmxhiTuqwamaiqBNzO67JdraoWq+pQVR2iqrPSbSS5MmfSeey6j3zOBpbPdb7nC2LL9nqqo6OD/v2dX2GgWz5nA8vnOt/zZdXIxIRvw4YNh97IUT5nA8vnOt/zBbFm4qmxY8dGXUJofM4Gls91vucLknPNJFfmTBoaGqIuITQ+ZwPL5zrf8wXJuWaiqs+q6k3Dhg2LupRQFRQURF1CaHzOBpbPdb7nC5JzzSRX7Nu3L+oSQuNzNrB8rvM9XxBrJp6KxXq6bIx7fM4Gls91vucLYs3EU4MHD466hND4nA0sn+t8zxfEmomndu7sdn0wL/icDSyf63zPFyTnmkmuHM01ZsyYqEsIjc/ZwPK5zvd8QXKumeTK0VwbN26MuoTQ+JwNLJ/rfM8XxC6n4qlYLEZenp+fFXzOBpbPdb7ns8up5Ji1a9dGXUJofM4Gls91vucLYiMTY4wxPWYjkxzj8wI9PmcDy+c63/MFybmRiYjMBGZOmjRpTlVVVdTlGGOMU2xkkpArR3OVlpZGXUJofM4Gls91vucLknMjk06+z5n4fESJz9nA8rnO93w2MskxlZWVUZcQGp+zgeVzne/5glgz8dSECROiLiE0PmcDy+c63/MFsWbiqS1btkRdQmh8zgaWz3W+5wtizcRTI0eOjLqE0PicDSyf63zPFyTnmkmuXOixtbU16hJC43M2sHyu8z1fkJxrJrlyaLDPR5P4nA0sn+t8zxckN1PngAEDBkRdQmh8zgaWz3W+5wtizcRTLS0tUZcQGp+zgeVzne/5glgz8VRhYWHUJYTG52xg+Vzne74g1kw8tWnTpqhLCI3P2cDyuc73fEGsmXhq0qRJUZcQGp+zgeVzne/5glgz8VR5eXnUJYTG52xg+Vzne74gdqFHY4wxPZaRCz2KSJ6I9O9y38Ui8s8ickq6RZrM8XmBHp+zgeVzne/5gqQ0MhGRXwHtqvrFxO83Aw8nHt4HXKaqL2a8ygyyxbGMMab3MnUJ+unAb5J+vx34KTAMeBL4dq8r7CO5cga8z5+OfM4Gls91vucLkurIpA24SFVfE5FJwHpgmqq+LSIXAY+pqhMHWduciTHGpC5TI5NmYFTi5/OABlV9O/H7fiC/1xWajFq3bl3UJYTG52xg+Vzne74g/Q+9yQe8AcwTkQ7gG3zwK69JQG6erZOFJk+eHHUJofE5G1g+1/meL0iqI5MSYCTwDPFRyIKkx64G3sxMWSZdtbW1UZcQGp+zgeVzne/5gqQ0MlHVKmCyiIxS1R1dHv46sDVjlZm0jB49OuoSQuNzNrB8rvM9X5BenQGvqjtEpEBEjhWRAYn71qnq9syWZ3pr165dUZcQGp+zgeVzne/5gqTcTETk0yJSCjQB1cDUxP0/FZF/yHB9JgUtLS3Mnz+foqIixo8fT1FREfPnz/fuktj5+X4f52H53OZ7viCpngE/C1gBNAB3dHn+RuC6jFVmUtLS0sL06dNZtGgRDQ0NqCoNDQ0sWrSI6dOne9dQjDHZJdWRyXzgZ6p6EfCjLo+9A5yUiaJM6hYvXkx1dTV79uz5wP179uyhurqaxYsXR1RZ5nXN6BvL5zbf8wVJtZl8BPhV4ueuZzs28rdzUEwfe/jhhwP/iPfs2cOSJUv6uKLwDB8+POoSQmX53OZ7viC9OWkx6Az38YBNwEdkx46uB9el9rhLtm3bFnUJobJ8bvM9X5BUm8kLwJ0iMjzpPhWRgcA/Ac9nqjCTmlGjDj4o9OnT0rhx46IuIVSWz22+5wuSajP5NnAk8GfiF3hUYB6wFhjLB09izEoiMlNEHmlqaoq6lIyaO3fuQY8i2b17Nz/+8Y/Zv39/H1YVjvXr10ddQqgsn9t8zxck5cWxRGQssBC4GDgC2AH8FvgXVf1LxisMiW8Xeuw8mqvrJPzAgQMZOHAgzc3NAEyfPp1ly5YxZcqUqEo1xjgsUxd6RFU3qeoNqjpWVQ9T1aNU9XqXGomPCgoKWLlyJSUlJRQVFSEiFBUVcccdd7B582ZWrFjBmDFjWLlyJdOmTeN73/see/fujbrsXvH9Et+Wz22+5wtiy/bmkKamJkpKSnjkkUcAOOmkk1i2bBkf//jHI67MGOOKTC3b+x+HuC3LXMkmHd19Oho2bBg/+clPeOmll5g4cSLvvPMOZ5xxBrfeeit//etfI6iyd3z/5Gf53OZ7viCpLo5Vw4fPLxkJDAF2AbtU9bhMFRemXByZJGttbWXBggXce++9xGIxJkyYwNKlS5kxY0bUpRljslhGRiaqOl5VJ3S5DSO+UNZWoDgz5Zp0lZWVHfTxwYMHs2jRIlatWsXf/d3fsXHjRi644AJuuOEGGhsb+6jK3jlUNtdZPrf5ni9IxuZMRGQOcJ2qfiIjOwyZ7yOTjo4O+vfv2QoD+/btY9GiRQcm5Y888kgeeughZs+eHXKVvZNKNhdZPrf5ni9jR3MdxHvAKRncn0nDhg0berztgAED+Pa3v01ZWRlnnXUWW7dupbi4mCuvvJKtW7NviZpUsrnI8rnN93xBMtJMRKQ/8I/Ysr1ZY+zYsSk/58QTT+TVV1/lwQcfpKCggOXLl/ORj3yEn/3sZ2TTUX+9yeYSy+c23/MFSfVorpe6uf0J2AL8A3BPKFWalDU0NPTqeXl5eXzlK1+hvLycSy65hF27dvGlL32Jiy66iPfeey/DVfZOb7O5wvK5zfd8QVIdmeQB0uW2G3gSmKGqSzNbnumtgoKCtJ4/btw4nnvuOR599FFGjRrFiy++yNSpU7n//vsjvyRLutmyneVzm+/5gqR6NNd5qnp+l9slqnqzqr4cUo2mF/bt25f2PkSEa6+9loqKCq655hpaW1u59dZbOeuss3jnnXcyUGXvZCJbNrN8bvM9X5BMTsCbLBKLxTK2ryOOOIJf/vKXPPPMMxx99NGsWrWKU089lQULFtDe3p6x1+mpTGbLRpbPbb7nC3LIQ4NF5Iup7FBVf55WRX3E90ODGxsbGTFiRMb329TUxLx58/j3f/93AKZMmcKyZcuYPn16xl8rSFjZsoXlc5vv+YIODe7JwdD/mcLrKOBEM/Hdzp07Q/mDHjZsGEuWLOGaa65hzpw5VFRUcOaZZ/K1r32Nu+66q0++Lw4rW7awfG7zPV+QnoxMjk1lh6r6floV9RHfRyZtbW0MGjQo9NdYuHAh99xzD/v372f8+PE88sgjXHjhhaG/btjZomT53OZ7vl6ftKiq76dyC6f87olIvog8LSLvishaEfmdiDhxbbCwbdy4MfTXGDRoED/84Q956623mDZtGjU1NVx00UVcf/317Ny5M7TX7YtsUbJ8bvM9XxCnL0EvIvnAuar6u8Tv/wTMVtVPHuq5vo9MYrEYeXl9d3zFvn37uPfeew9Myo8ePZoHH3yQ4uJiRCSjr9XX2fqa5XOb7/kydjkVEblYRJ4SkQoRea/rrQfPHysiD4jImyLSKiIqIuMDtj1GRJ4QkSYRaRaRJ0XkwALLqrqns5EkrARsZAKsXbu2T19vwIABzJs3j7KyMs4++2y2bdvGVVddxezZs9myZUtGX6uvs/U1y+c23/MFSfUM+EuB3wCDgROBSqAWOAaIAa/0YDeTgM8CjcBrB3mtwcBLide5DvgCcDzwRxE5POBpXwVW9CSL70499dRIXveEE07g5ZdfZsmSJQwZMoSnn36aKVOm8NOf/jRjl2SJKltfsXxu8z1fkFRHJt8FHgIuTfz+HVU9D/go0A94vgf7eFVVR6vqpcCvD7LdHOKjjFmq+rSqrgAuB44Fvtx1YxG5E5gM3NnDLF6LcoGevLw8br75ZsrLy7nssstoampizpw5XHDBBVRXV6e9f98XH7J8bvM9X5BUm8mJwLPERyFK4tBiVV0PLCDebA5KVXt6Rs/lwEpVPXAJTlXdCLwOXJG8oYjcRnwtlUtUtbWH+/faaaedFnUJHHPMMTz77LM89thjFBYW8tJLLzF16lTuvfdeOjo6er3fbMgWJsvnNt/zBUm1mcSADo1/X7EdGJf02BZgYqYKIz7a6e6aHeXAlM5fRORW4HPAhaq662A7FJGbRGS1iKyuq6ujoaGBuro6Nm/eTGNjI9XV1bS1tVFRUUEsFqO0tBT42yeN0tJSYrEYFRUVtLW1UV1dTWNjI5s3b6ZzfzU1NbS0tFBZWUlHR8eBhXI699H577p162hvb6eqqorm5mZqa2upr6+nvr6e2tpampubqaqqor29nXXr1nW7j7KyMjo6OqisrKSlpYWampoDmf70pz9lRabt27czY8YMfv/733PVVVfR1tbGbbfdxrRp03j77bdTytT5Pr3yyivevE/d/e2tWbPGu0zJ79MLL7zgXabk92nNmjXeZUp+n4KkumzvG8BSVf2ZiPw/YDhwFdABPAqMU9UpB9lF1/3dCCwFJqhqTZfH9gL3qeq8LvffBcxT1f4iMhb4C/G1VHYnNuno7kiDruxormg899xz3HzzzWzatIn+/fszb948vvOd7zBw4MAe7yNbs2WK5XOb7/kydTTXL4CPJH6eT3z0sIn4kr2fBP4lnSK70V2nO3CcqapuUlVR1YmqOi1xO2QjyQWVlZVRl9Ctyy67jPLycubOnUtHRwd33XUXp5xyCm+88UaP95Gt2TLF8rnN93xBUr1q8EOqWpL4eQ0wlfhk+DeBaar6RAZrawRGdnP/iMRj5iAmTJgQdQmBhg4dykMPPcSrr77K5MmTeffdd/nEJz7B1772NVpaWg75/GzOlgmWz22+5wuS1lgsMTL4qar+m6pWZKqohHLiI5+upgC9fi0RmSkijzQ1NfW6MBdk+tyOMJx99tmUlZVx5513kpeXxwMPPMBJJ53E7373u4M+z4Vs6bB8bvM9X5BUzzMpFZFviMjosApK8gwwPfnyKImTG89KPNYrqvqsqt40bNiw9CvMYiNHdjeoyz75+fl8//vfZ/Xq1Zx66qm8//77fOpTn+K6665jx44d3T7HlWy9Zfnc5nu+IKmOTLYBi4C/iMhvROSaxCVNUiIiV4rIlUDnMXSXJO47N2mzpUANsEJErhCRy4mfkPgX4CepvmauaW116wjpadOmsWrVKu6++27y8/P5+c9/zpQpU3j88cc/dLKja9lSZfnc5nu+IKnOmVwCjAVKgCOAx4BtIrJMRM5PYVe/TtxuTvz+cOL3hUmv9Vfik/rriR8p9gtgI/BJVT30F+s5zsWjSfr3709JSQlvv/025557LvX19Vx99dXMmjWL9evXM3/+fIqKijjmmGMoKipi/vz5PZpjcY2L710qLJ+f0rrQo4h8hPhlTv6B+CVVNqlqSpes72siMhOYOWnSpDlVVVVRlxOahoYGCgsLoy6j12KxGEuXLqWkpITm5mby8vLo16/fB5ZEzc/PZ+LEiaxcudKrdbddf+8OxfK5LWMXekymqu8C3wO+TfykxbHp7K8v5Mqcieuf2PPy8vjyl79MeXk5xx9/PLFY7ENra+/Zs4fq6moWL14cUZXhcP29OxTL56eerLTYLRH5JPFRyWygAHgL+EGG6jJp8uWT0dixY2lsDD4SfM+ePdx9993s3r2bwsJCioqKKCwsPHArKipixIgR9OvXrw+rTo8v710Qy+enlJqJiJwEXEv8a62jgfeBHwOPqqq/3xk5aNOmTZx44olRl5ERQUd1dWpvb+f+++8PfFxEGDlyZGCz6e73goKCjK/DcjAtLS0sXryYhx9+mB07djBq1Cjmzp3L7bff7tVXeODX32Z3fM8XJNXLqcSAJuKT5Y+qauAl5LNVrsyZdHR00L9/rweeWaWoqIiGhobAx4cMGcJ3v/tdGhoaDty2b99+4OeDjWyCHHbYYSk1n1GjRqV0SZhkLS0tTJ8+nerqavbs2XPgfl/nhHz62+yO7/mC5kxSTXw18IyqtmemrL6nqs8Cz55++ulzoq4lTOXl5Zx88slRl5ERc+fOZdGiRR/4j7ZTfn4+3/zmN7n99tsDn9/R0cGOHTsCm01397W2trJly5aUTkAbMmTIQZtP18dGjBhBXl4eixcv/lAjgQ/OCS1cuDDgVd3j099md3zPF8TpZXvT4fuFHn0SxSf31tbWgzab7n7fv39/Sq+Rl5fHqFGj2Llz50GfW1RURH19fbqRjMmIoJFJys0kcUb6Z4lffr7rCYuqqjf0uso+5HszWbNmjVfrKnTOKSxZsuTAoZe33HJL1swpxGIxmpqaUmpAu3bt6tG+RYT9+/f36RxOmHz72+zK93wZaSYicgXx+ZI8oB7o+nWXqqoTa7D73kxM9tu3bx87duxgypQph5zXGTduHLNnz6a4uJgzzzwzZ0+MM9HL1HkmdwEvA0ep6hhVndDllvWNJFcu9Ojz0qG+ZBswYABHHnkkX/3qV8nP7/6qRP369aOgoIDa2lp+9KMfcfbZZ3P00Uczd+5c/vCHP6S1YmVUfHn/gvieL0iqI5O/Ap9R1d+HV1LfsJGJyRaHmhN64403KC8vZ/ny5SxfvpyampoD24waNYpZs2ZRXFzMjBkzOOywwyJIYHJJpkYmlcCozJRkwtS5jKePfMtWUFDAypUrKSkpoaioCBGhqKiIkpISVq5cydChQznjjDO45557eO+991izZg3f+ta3OOGEE9ixYwfLli3j0ksv5YgjjuALX/gCTz/99EGXV42ab+9fV77nC5LqyGQG8CPgClV9L6yi+oLvI5P29vZen/eQ7XzOBj3Pp6pUVFTwxBNPsHz58g/8J3b44Ydz6aWXUlxczKWXXsqQIUPCLDkl9v65LVMT8K8BE4mPTqqAnV02UVU990NPzEK+N5OqqiqOP/74qMsIhc/ZoPf5qqqqDnwVlvy3PXDgQC6++GKKi4uZOXMmI0aMyGS5KbP3z22ZaiYv0/267AeoaiqXoo+M782kubmZoUOHRl1GKHzOBpnJ9/777/Pkk0+yfPly3njjjQNrwvTv358ZM2ZQXFzMrFmzKCoqykTJKbH3z20ZO8/EdblyOZXa2lrGjRsXdRmh8DkbZD5fXV0dTz31FMuXL+eVV145cIJkXl4e55xzDsXFxcyePZsxY8Zk7DUPxt4/t1kz6cL3kUl9fT1HHHFE1GWEwudsEG6+hoYGVqxYwfLly3nxxRc/cFn/M844g+LiYoqLixk/fnworw/2/rkuY+uZiMjRInKfiKwWkY2JKwmTWBv+7zNRrDEmHIWFhdxwww385je/ob6+nkcffZRZs2aRn5/Pm2++yW233caECRM4/fTT+cEPfsD69eujLtk4IqVmIiIfBdYRX8dkC/FLqnQe2H4s8PWMVmd6rbuLIvrC52zQd/mGDx/Otddey1NPPcX27dt5/PHHufrqqykoKPjA4cdTp05lwYIFrFu3jkx8k2Hvn59SnYD/LTAEuBjYA+wFTlfVUhG5CrjbhbPgwf+vuXyeBPQ5G0Sfr62tjRdeeIEnnniCZ555huSrRRx//PEHvgo77bTTenW9sKjzhc33fJn6musTwA9VtYUPH9W1DTiyl/WZDNu2bVvUJYTG52wQfb5BgwZx+eWX8/Of/5z6+nqef/55brzxRgoLC6mqquKHP/whH/vYx5gwYQK33norr7/+OrFYrMf7jzpf2HzPFyTVkUkz8HlVfVZE+gH7+NvIZDawVFWdOEPe95GJzydO+ZwNsjdfR0cHr732GsuXL+fJJ5+krq7uwGNHHXUUn/nMZyguLuacc8456OJQ2ZovU3zPl6mRyVvA9QGPfRZ4PdXCTDh8njj1ORtkb77+/ftz/vnn8+CDD7Jp0yZef/11br31Vo499ljq6up4+OGHmTFjBkcddRQ33ngjzz//PHv37gXi1x+bP38+RUVFDBo0iKKiIubPn09LS0vEqTIvW9+/sKU6MjkXeBH4I/AYsAy4E/gocA1wjqquCqHOjMmV80yM6SuqSmlp6YGz75P/Mx02bBif+tSneOONN9i+fXtOLEvsu6CRCaqa0g24jPilVGJJt/eAS1LdV5S30047TX22evXqqEsIjc/ZVN3OF4vFdN26dbpgwQI96aSTlPjcauDtsMMO06985StaX1+ve/fujbr8jHD5/esJYLV2839qr09aFJFJwBHADlX9c692EiHf50yMyQbr16/nlFNOobW1tUfbH3744YwYMYLhw4czYsSID/x8qPsGDx4c2WqUnSuBPvzww+zYsYNRo0Yxd+7crFkJNJPsDPgufG8mPi8d6nM28C9fXl7eIc9PGTlyJLt27UrpqLCuBgwY8KEm010D6u7xYcOG0a9fv1697qHWo/Hta7xMXejxiwd5OAY0Af+rqptSL7Fv+d5MjMkWRUVFNDQ0HPTx+vp6VJXdu3eza9cuGhsbaWxsPPBzT+5Ldw2XoUOHpjwaGj58OA8++CD33Xdftycr5ufnU1JSwsKFC9OqLZtkqpnE+Nv5JcnjyeT7YsCvgOtVdW/vyg2f782krKyMk08+OeoyQuFzNvAv3/z581m0aFHo/9m2t7f3uhE1NTVl5Oz+7nQ2S19kqpmcAfwCeBZ4gviJiqOJHxb8aWAucBKwEPiRqn4r/dLD4Xsz6ejoOOix/i7zORv4l8+Fr4H279/P7t27e9WIDnWSYl5e3oErNfsgqJmk+hd7G/DfXZrEeuA1EdkN3KSqnxGRocDngaxtJr7bsGEDJ554YtRlhMLnbOBfvs5liRcvXsySJUtoaGigsLCQW265JWsmqPv168fw4cMZPnw4EyZMSOm5h/oab9QoJ87jTluqJy1eCPwh4LGXgBmJn18Fju5tUSZ9Y8eOjbqE0PicDfzMV1BQwMKFC6mvr6e5uZn6+noWLlyYFY0kXXPnziU/P7/bx/Lz87nlllv6uKJopNpM9gJBh5mclni8c79/7W1RJn0H+6TkOp+zgeVzze23387EiRM/1FA6v8a7/fbbI6qsb6XaTH4NLBSRfxaRY0VkUOLf24AFxCfeAaYBWXnuiYjMFJFHkq+E6iMfPvEF8TkbWD7XdH6NV1JSQlFRESJCUVERJSUlWTEf1FdSnYAfBCwFPtfNw48Bc1R1j4hcBuxW1VczU2bm+T4BX1dXx1FHHRV1GaHwORtYPtf5ni8jE/Cq2gZcKyLfA/4eOAqoA1ap6vqk7Z5Ls16TpnRO/sp2PmcDy+c63/MF6dXxh4nGkZuXxnTE4MGDoy4hND5nA8vnOt/zBTnknImIjBORAUk/H/QWfsmmJ3bu3Bl1CaHxORtYPtf5ni9IT0YmG4EziK9lUsOHV1jsqncXuDEZNWbMmKhLCI3P2cDyuc73fEF60ky+BFQn/ZybV4Z0zMaNG5kyZUrUZYTC52xg+Vzne74gGbtqcGIZ32Gq6sQYz/ejuWKxGHl5qR757Qafs4Hlc53v+Xq9bK+I7BSRU5N+FxF5RkSO67Lp6cD29Es1mbB27dqoSwiNz9nA8rnO93xBDjkySVwpeLqqvpX4vR+wDzhdVUuTtvt74A1VdWLOxPeRiTHGhKHXIxPjpjVr1kRdQmh8zgaWz3W+5wtizcRTPq3U15XP2cDyuc73fEGsmXiqtLT00Bs5yudsYPlc53u+ID2dMykGyhJ39SN+EccrgPKkTU8BHs/2ORMRmQnMnDRp0pyqqqqoywmNz0eU+JwNLJ/rfM+X7pzJE0BV4laZuO/ppPuqiF9ROOup6rOqetOwYcOiLiVUlZWVh97IUT5nA8vnOt/zBenJSYvXh16FybhUV4tzic/ZwPK5zvd8QQ7ZTFT1v/qiEJNZW7ZsYeLEiVGXEQqfs4Hlc53v+YL4+8Vejhs5cmTUJYTG52xg+Vzne74g1kw81draGnUJofE5G1g+1/meL4g1E0/5fDSJz9nA8rnO93xBcjN1DhgwYEDUJYTG52xg+Vzne74g1kw81dLSEnUJofE5G1g+1/meL4g1E08VFhZGXUJofM4Gls91vucLYs3EU5s2bYq6hND4nA0sn+t8zxfEmomnJk2aFHUJofE5G1g+1/meL4g1E0+Vl5cfeiNH+ZwNLJ/rfM8XJGPL9rrGFscyxpjU2eJYOcbnBXp8zgaWz3W+5wtiIxNjjDE9ZiOTHOPzpyOfs4Hlc53v+YI4PzIRkW8B1wHHA7NV9emePM9GJsYYkzqfRyZ/AC4FXo26kGyybt26qEsIjc/ZwPK5zvd8Qfq8mYjIWBF5QETeFJFWEVERGR+w7TEi8oSINIlIs4g8KSLjkrdR1VWqWt0nxTtk8uTJUZcQGp+zgeVzne/5gkQxMpkEfBZoBF4L2khEBgMvAScS/xrrC8S/yvqjiBzeB3U6rba2NuoSQuNzNrB8rvM9X5CeLNubaa+q6mgAEbkRuChguznAccAJqrohsf3bxNeb/zJwXx/U6qzRo0dHXUJofM4Gls91vucL0ucjE1WN9XDTy4GVnY0k8dyNwOvAFWHU5pNdu3ZFXUJofM4Gls91vucLks0T8B8F3unm/nJgSh/X4pz8/PyoSwiNz9nA8rnO93xBsrmZjCQ+r9LVTmBE5y8i8h0R2QScAfxURDaJyJHd7VBEbhKR1SKyuq6ujoaGBurq6ti8eTONjY1UV1fT1tZGRUUFsViM0tJS4G/HjZeWlhKLxaioqKCtrY3q6moaGxvZvHkznfurqamhpaWFyspKOjo6KCsr+8A+Ov9dt24d7e3tVFVV0dzcTG1tLfX19dTX11NbW0tzczNVVVW0t7cfODqk6z7Kysro6OigsrKSlpYWampqDmRqaGjwLlPn+1RXV+ddpuT3SVW9y5T8PlVVVXmXKfl9UlXvMiW/T0EiPc8kMWeyFJigqjVdHtsL3Kuqd3a5/1+BO1Q1rfke388zqa2tZdy4cYfe0EE+ZwPL5zrf87l4nkkj8dFJVyPofsRikgwfPjzqEkLjczawfK7zPV+QbG4m5cTnTbqaAlT0dqciMlNEHmlqaup1YS7Ytm1b1CWExudsYPlc53u+INncTJ4BpovIcZ13JE5uPCvxWK+o6rOqetOwYcPSrzCL+TzM9jkbWD7X+Z4vSCTNRESuFJErgdMSd12SuO/cpM2WAjXAChG5QkQuB1YAfwF+0qcFO2j9+vVRlxAan7OB5XOd7/mCRDIBLyJBL/qKqp6XtN044H7gQkCIX4frG10n63vD9wl4Y4wJQ1ZNwKuqBNzO67JdraoWq+pQVR2iqrPSbSS5Mmfi82Wwfc4Gls91vucL4vwl6HvLRibGGJO6rBqZmPD5/OnI52xg+Vzne74gNjIxxhjTYzYyyTGdl2jwkc/ZwPK5zvd8QXJuZCIiM4GZkyZNmtN5jSAfdXR00L9/FCsMhM/nbGD5XOd7PhuZJOTKSYsbNmw49EaO8jkbWD7X+Z4vSM41k1wxduzYqEsIjc/ZwPK5zvd8QayZeKqhoSHqEkLjczawfK7zPV8QayaeKigoiLqE0PicDSyf63zPFyTnmkmunAG/b9++qEsIjc/ZwPK5zvd8QXKumeTKBHwsFou6hND4nA0sn+t8zxck55pJrhg8eHDUJYTG52xg+Vzne74g1kw8tXPnzqhLCI3P2cDyuc73fEGsmXhqzJgxUZcQGp+zgeVzne/5glgz8dTGjRujLiE0PmcDy+c63/MFscupeCoWi5GX5+dnBZ+zgeVzne/57HIqCblyNNfatWujLiE0PmcDy+c63/MFybmRSSe7BL0xxqTORiY5xucFenzOBpbPdb7nC2IjE2OMMT1mI5McU1paGnUJofE5G1g+1/meL4iNTDzl8xElPmcDy+c63/PZyCQhVy70WFlZGXUJofE5G1g+1/meL4iNTDzV1tbGoEGDoi4jFD5nA8vnOt/z2cgkx2zZsiXqEkLjczawfK7zPV8QayaeGjlyZNQlhMbnbGD5XOd7viDWTDzV2toadQmh8TkbWD7X+Z4viDUTT/l8NInP2cDyuc73fEFyM3UOGDBgQNQlhMbnbGD5XOd7viA5ezSXiGwH3o+6jhAVAg1RFxESn7OB5XOd7/mOVdWirnfmbDPxnYis7u7wPR/4nA0sn+t8zxfEvuYyxhiTNmsmxhhj0mbNxF+PRF1AiHzOBpbPdb7n65bNmRhjjEmbjUyMMcakzZqJMcaYtFkz8YSIjBWRB0TkTRFpFREVkfFR15UpInKliCwXkfdFpE1E/iwiPxCRIVHXli4RuVhEXhKRrSLSLiKbRORxEZkSdW1hEZHfJv5G74q6lnSJyHmJLF1vu6KurS/1j7oAkzGTgM8Ca4DXgIuiLSfjbgNqgW8Bm4BTgAXA+SJypqrGIqwtXSOJv28PA9uBccA8YKWITFVVr06uFZHPASdHXUcIvgb8T9LvHVEVEgVrJv54VVVHA4jIjfjXTGaq6vak318RkZ3AfwHnAS9FUlUGqOovgV8m3ycibwGVwJXAvVHUFQYRGQ7cD3wTeCzaajLuXVVdGXURUbGvuTzh+CfzQ+rSSDp1fgo8ui9r6SM7Ev/ui7SKzFsElCcaqPGINRPjsnMT/74baRUZIiL9ROQwETke+AmwFfjviMvKGBH5BPBFYG7UtYTkFyKyX0R2iMhjIjIu6oL6kn3NZZwkIkcD3wNeVFVf1l9eBZyW+HkD8ElVrY+wnowRkQHEG+Q9qvrnqOvJsCbiX0W+AjQTn8/7FvCmiJziy3t4KNZMjHNEpABYQXyC8/qIy8mkLwBDgeOIH3Dwgoh8QlVrIq0qM+4ABgH/GnUhmaaq/wv8b9Jdr4jIq8BbxCflvxNJYX3MmolxiojkA88Q/w/3XFXdFHFJGaOqnV/XrRKR54Ea4kd13RxZURmQ+Lrn28CNwEARGZj08MDEpPxuVd0fRX1hUNVSEVkPfCzqWvqKzZkYZyS+KlkOfBy4VFXXRVxSaFR1F/GvuiZFXEomHAfkA/8XaEy6QXwE1ghMjaa0UAmQM9erspGJcYKI5AG/AGYAl/l+CKaIjAZOJJ7ZdWuB87u5/4/EG8wy4o3TGyJyOjAZeDzqWvqKNROPiMiViR87J3EvSawouV1VX4morEx5CLiK+HfufxWR6UmPbXL56y4ReQooBd4mPoE7mfh5GB14cI5JYpT1ctf7RQTgfVX90GMuEZFfABuJv4e7iE/A3wlsBh6IrrK+ZVcN9oiIBL2Zr6jqeX1ZS6aJSA1wbMDDC1V1Qd9Vk1kicgfxqxdMBA4D/kL8P98feDL53q3E3+u/qqrTE9QicifwOeJ/n4OJH9L9PDBfVeuirK0vWTMxxhiTNpuAN8YYkzZrJsYYY9JmzcQYY0zarJkYY4xJmzUTY4wxabNmYowxJm3WTIxJk4j8Y2KZ1oxc+kREXhaRlzOxL2P6ijUTY4wxabNmYowxJm3WTIzJsMTXVH8SkQtEpFREWkXkHRGZ1c2214hIpYi0i0i5iHwmYJ+FIrJERDYntq0UkZuSHj9KROoT1/lKft5Nia/gLst4UGOSWDMxJhwTgR8D9wGzgTrgieR5FRG5AHgMqEpsszjxnBOSdyQiQ4HXgcuABYl/nwWWiMhXARLXgLoemCUiNyee9xHgfuABVX0urKDGgF012JiwFALnqGoVgIiUEm8onwW+n9hmIVAJXKGqscR27wIrgeSlbb9O/CKCUzv3B7yYWFRqvogsUdUOVX1ORP4NuE9E/gf4D+KXdi8JMacxgI1MjAlLVdJ//CTWAa8HxgGISD/iq/A90dlIEtutIr7CYrJPEV8ffqOI9O+8Ab8DRgFTkrYtAdYTH8kcD3xOVfdkOJsxH2LNxJhw7OzmvnbiKw5CfOQyANjWzXZd7zsCOAfY1+X268Tjozo3VNV24FfAQOD3qlrRy/qNSYl9zWVMNBqIN4TR3Tw2Gng/6fcdxEc1Xw/Y14GvxETko8B3gdXAFSJyhaquyEjFxhyEjUyMiYCq7gf+B7gysSQxACLy98D4Lpv/lvgSvrWqurqb2+7Ec/OBXxKfhzkLeBJYJiJjwk9kcp01E2OiM594k3haRC4TkX8kvmb41i7b3U98ZPKaiNwsIueLyKdF5DYRSR51LCZ+FNnnVHUvMAdoAx5NbljGhMH+wIyJiKq+CHye+KHATwK3A9/gg0dyoapNwJnAb4A7iE+8/wdwBfBHABH5NPBPwNdV9c+J5+0ErgXOS+zbmNDYsr3GGGPSZiMTY4wxabNmYowxJm3WTIwxxqTNmokxxpi0WTMxxhiTNmsmxhhj0mbNxBhjTNqsmRhjjEnb/wdSi7ym0rE9vgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -342,7 +342,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEaCAYAAABejCMwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAC2lUlEQVR4nOydeXxU1fn/3+dmApk7CZDMFhaVLYC44gKC1VqVarV2U6RudUMUWtlEBISyWKVfta7tr5VKq1X7bbW239rWfttvrdpFxYIKYZElgEAIExLIMpNJyMw8vz/OncnCJJmESTIJ83m97muSO/feOffcc89zznk+z+dRIkIaaaSRRhppdDeM7i5AGmmkkUYaaUDaIKWRRhpppJEiSBukNNJII400UgJpg5RGGmmkkUZKIG2Q0kgjjTTSSAnYursAPRkul0uGDh3a3cVII4000uhRWL9+fZmIuJvvTxuk48DQoUNZt25ddxejW1BUVMSIESO6uxgnLNL1331I1/3xQyn1Wbz96SW7NDqEvLy87i7CCY10/Xcf0nXfeUgbpDQ6hJqamu4uwgmNdP13H9J133lIG6Q0OgTDSDed7kS6/rsP6brvPPT4mlVKDVFKPauUel8pVaOUEqXU0ATPzVJKPaaUKlFKBa1rXNzJRe4VyMzM7O4inNBI13/3IV33nYfeQGoYCVwPrAf+CXyxHeeuAa4G7gd2Ad8G/qKUmiginyS5nD0GgUAAn8+H1+vF4XAcsz87O5u9e/dit9sBYvv8fn/ss/m5aSQPgUCA7du3c/DgQYYNG4bD4UjomSX6XFq6Vhoafr8fl8vV3cXoFuzevZu3336bQYMGMWTIkFj7SxpEpEdvgNHo72mAAEMTOO8s69jbG+2zAduANxL57XPPPVd6E+rr62Xx4pXi9Y4Wr3eieL2jZfHilRIMBmXx4pXi8YwWh+MMMQynDBt2vpjmQDHNwWKaw0WpPMnMPEmUcorDcYZ4PPrc+vp68fv9UlRUJH6/v7tvsUejvr5e5s1bLHb7IBk8eKIYhltMc6BMnHiZeDz6mXk8BTJt2rflH//4h9x22z2SlzdCTFM/M9McLi7XCJk69RZ56623ZO3atVJYWBh7LhUVFTJz5lzxeEbFnv/8+Utk27Zt6WfXCNXV1d1dhC5D9N09ePCgDB48WiBPoMD67C9ZWV5ZuHCZ1NfXt+u6wDqJ1y/H29lTt3YapKXAUcBstn8FUAf0besavc0gLV68UpzO68Xl2i/5+WFxuw9Ibu51MmHCpeJyTRXT3CmGUS6wQ6ZOvVfgCoHbBaYI3G997hfDKBfT3ClO51SZMOFScTqHicczPt3BHQeKi4vl1FPPFfiCQKFMnbpOYIf1DEZKVtZ6sduXC4wUGC2QKzBKYL3AIYF9Al8W8AoMsr4fIeASu32gjB9/iWRleQQuE6UKJTu7Skxzpyg1WUxzuHg8o2TmzLlSUVHR3VXR7di6dWt3F6HTUVFRIXfd9R3JyxsmTufZolR/gSutdhSyPq8UGCx2+zhZvHhlu66fNkjHHvsrYFuc/ddb1zitrWv0JoNUUVEhpjlYlCoUwygVpUpEqYOi1CaBPMnKmi2wR2C51QHmCwwTcAustTq/EoGQGEZIlCoWm22OQJ4oNV4MY7TYbHMFLhPTHB6bfbV3ZHWiIRgMysSJl1sG5GTLiCyXrKz9AjMEhlsj1kECZwtsFTgoUCgwWeBigXUCxdZ3A62Bwz6BcmvfaQIu6zoF1jM+IFBmGb1hAu+IUleIaQ464Z9bb773+vp6uffe+0SpHOudHiEwzpoR7ROINNr2CTgFhonHM6pdg8yWDFKPJzUcB/KAI3H2H270/TFQSk1XSq1TSq0rKSmhrKyMkpISiouLOXLkCEVFRQSDQbZs2UIkEuGjjz4CYP369QB89NFHRCIRtmzZQjAYpKioiCNHjlBcXEz0env27MHv9/Ppp58SCoXYsGFDk2tEPwsLC6mrq2PHjh1UVVWxd+9eSktLKS0tZe/evVRVVbFjxw7q6uooLCyMe40NGzZQW1vL8uUP07//UCZPtjNmTJDzzqtm0qRaCgryufrqqWRnF3PzzT/FMLYwa9Ycbr31XubM+TEwklmzajCMPG6+uRyXK8hVV+1h5MifMWGCjfPP/zOnnfYGl1/+a9zuSqZO/SqQzQ03/JTVqzfz4osvd8o9hUIhPv30U/x+P3v27Omxz+mJJ57m/feLufvuu8jKOpmpU69g4MC3WbLkZcaODXL++b/kwgt/R0HB77n66qtxuX7FzTcfwjBGM2vWd4FtzJnzO+ASZs36F4YR5uab5+Fy5XL11YcpKPhvLrzwi5x//h8ZO/ZNvvjF3zBw4D6mTn2NrKwfcffdzwOZzJnzFiJnMX36NJ57bgNr1rxwwj6njRs39rp7qqur45NPPmHo0DPIyLAh0oc5c24Ffsvddy8nK2sgU6f6GTjQzxe/uIexY8s5//wMLrzwCxQUDOWSS77Avn37Er6nFhHPSvXUjfbNkP4PeD/O/snWNS5q6xq9ZYY0f/4SAY81Oj4g4LOm5RFrZD1KYLs1ii60/i8UqLSWh4qsz2KBkChVaV1rn4BPDCMkUGdde4woNV7c7iLxeA6K1zsmvXzXAoqLiwX6C1wbq1tdh9cKDLD+DllLcj7rmDEC1db+sMAEaxa1Q+Ab1gwpJFAr8KA1wt1kzW5LrO9KBIYIfFXgPYFd1m9NFRgmWVl/Tz+3XojzzrvYerdd0uArGiRwszVDL240OxLr/zwBb3qGlAQcJv4sKLfR970egUCAn//8FQxjGHALMAs4hI4I8AFzgOvQVZVnfedkzhw/EAJuABYDX7WOPYjITnQ12gGDSKQcqAQyABsihzAMLxkZXiAXn8/XVbfbozBv3gNAJvBDwAsowAM8zZw59wCmta8fEAHc6Ho/aF2hFF3vLiAMPIx2m34GfB/4GE1SHQs4rd86bB3fF9gAzAWuBH4KPApUU1s7CL8/84R9btFRf29BKBTi3nvvZ926T9DP341uDzcC/4tuTxH0eL/EOuuA9X+Yvn1dTJt2c1LYdieyQdoMDFNKmc32j0W/tTu7vkhdD5/PR0aGG6gA7gDGAJcAE4EvAMOA+9Crm2Voo1LGU0+djCYl3gUMBV5Hs+7PBKagq+8AusN0oju5EHAIm20YhuEgHPYBR/B6vV1xqz0KpaWl/PnP76ANjBtdj1F4eeqp19BNWGiI3tiJfkZeGgYT16CfbT1QZX03E3gFeMb67iC6KxiA7ni2An70IsJ7wLvAFuAnwEDgMMFgCdnZ2Um+656Bc889t7uLkFQsW7aK1at/D4wH3gYKgX8AnwK/BZ5ED1Y2oMnJY6zPDUCEuXOvY8WKRUkpy4lskN5A1/KU6A6llA2YCvxVROq6q2BdCa/Xi1KVZGV9DaXuA24DbkXPhl5Bz35KgXnAacCzwNXMmfMquoPrA3yNPn0G06fPAFyud3E6f09W1jXWOdH14hJ0B3kDkcgBQqFdRCKzufPOG9OxLo0QCoV48MGHGDv2Aqqq+gA1wA604QFtMHYyZ84U4AdowxNGz1xnAeXAZejBxElAkfX5DeBe9HNYix4cZKNntrOt62BdZx76tRhq/a4beAL4Dfp5/oCsrH74/f7OqYQUR2+aIQUCAZ5//iXq60Now+NFmwUv8BSa+5UNnAwE0O1Gr454PHYOHtzBqlXLsdmSE9LaGwJjUUpdZ/0ZHbp8SSl1CDgkIu8qpU5Bv5krRWQlgIh8opT6NfCUUioT2A3MQE8JburaO+g+OBwO7rzzJp57rhCRIQSDFwDDgX3ozmowupPzA28BdwP/4KmnHMD30MtyNRw9motSisrKeYRCnyFioju5yzAMJyJHsNmuJRSaCbxJJDKZ22+/kVtvnUogEEgbJQt6tLoZpd4APo82JPcDq9CdxEHgPp56ahR6ue3z6HFVJfBl9Oh2F9qIvAyMRi/zrQGeQy/JZKAHGQ9b2xNoI5YDFGG398MwXqWmpgqRHOt4t/V5GNMcSXb2phN2ZtubZkg+n49wOBs9sHShBzwRGoxSLnrGXA24uOGGi/jylyczceJEhg0blvwCxXMs9bQNPYyLt71jfT/U+n95s/Ps6LfxIFCLHjpekujv9hZSQzQg1ukcLkoViFJrxeEoEYejRHQcywHLwXm65cT8QO644/8EvmM52PdbjvAdAl8SeECU8lvnrJOsrE/E6/XLwIEibvcBcTpHyuzZDxwTgNub6bSJwO/3i9c7Wtzu/WK3z7UIB2MsIsIQgXMF8gUGyB13zBQ4ySI39LOIC4NFU8H7S0aGdjbr51UosEA03btY4KjAButZ3S9QJZq6f5FAP8nIcIrbvU8cjkrrufqsawwWp/NjcbmmtjvupDdh48aN3V2EpKGsrMxqK3kCG63nXSZQb/090mon3xG7fVDS4tA4EeKQunrrLQYpCp/PJy7XSHG7D0h+flgMw2fFFB0UwxgtublvilLni1Il0q/fNsvgFItSYdGxLwclyvTSBmm5wLWiVKHk54fF4zkoLtdUmTRpsrhcU8XjOSgDB0ps/4ncyYmIFBUVidc7URyOlaLU9dLAZFwrMEnALX37zpKsrHxxuUZa9e+1jE2tNXj4gtjtQ+Xjjz+Wm266XZQqENgde1YN7LuDAtssozdaNLtqhcAnApeLzXZaLCZNd1SXW/FjY074wUNtbW13FyFpmDRpsjXoOcsasBwQqLCe+WTRjLt5ApfK/PlLkva7LRmkE9mHlEYzeDwepk//FiJzCYVKAIVIGTAbu/0m+vS5GJESRIq57LJPAQfQD5EwegKq0E7vXOAASs0gM3MMSl1GKDQRpS7httsK2LlzL4bxtMWyg4wML4bxNGvW/JJAINAt954K8Hq9iJRRU/MSmnAwGM2G+xZ67T5CXd1vqK09jYsu+hmaRPIRsAdNXrgR8BMMVvHCC7/iRz96ErdbMWBAMdonOBD9jKLP6xRr/yNoKcgHrWOeJBTyIfJ14KsodR1ZWWV861vXUFS0jocfXhrzGQQCAXbt2nVCPbe9e/d2dxGSgtLSUt57bx3aL/hzdHv7AppV+XXgQ2AQ8AoTJxqsWrWs08uUNkhpNMGKFYuYPv00DOMy4ELgYkzzNHJyFiESQjvZv8hHHy1DryuPA5YBIZSKAMVon5MNh8NObu53cLkG8PbbaygqWseMGbejVF7MGEWRpoBrf961116Ndu3mogkkRcDf0Wy3d9Ak0HF89NEQ9Os7EG1QCoE3gfeBd/n5z7fzve89zre+dT2RyKNo9p0PbYiqrM8itO/pi+jV60o03duFUsPJyvopkcj9iPyOurqXeOml1wmFQkAD+WLEiHOZNOlmRow4lwcffCj2fW9Gb/CdhUIh5s1bjG5DmejwyzfQg5UJwJ8BN336FDN//l384x9/ThpxoTWkDVIaTWCz2Xj44aXs2rWeu+++mry8M3A4pqOUjaqqhWgH+aUMH/4ielT9BpoF9iOysqpRajp2+1fwek/BNGuIROYwbdrNnH766TgcDutlPmxRvhuQpoDrTsJuNxHxocXmXwaeRKl8GuKMngL+yPDhh619YTQZ4RS0kYkALqqqlvH44z/kRz/6GaHQJrRBuhXtoM60jpuDlm38DD2IyECpMFCGyAFqa6cBjwHfQOR1AoFsFi1aDjSQL0TexTDeQ+RdVq/ezLJlqzq9nrobFRUV3V2E48aiRSv44x+PoAc7HwAbgfOBa9Eu9WeAMNnZ/Vi+fGGXGCNIG6Q0WoDD4eCZZx7j7rvPQqlLCIcnUFv7Kjqe5VmOHPGiAzIHA98Fnicr64uceWYF2dm/R+RzKHUJ06ef1iRGIcrqi0Rmx4xSOOxLU8DRnfwvflGEad4FrEQvp+UjEgGqUMqONkr9OXIkiJ6tbkAblEp0vFcVerbze2ACweDfgI/o2/ctNJH0SvTM9yx0J6QNk1KHMIw6srLK0cGwTuBfNMQhbQYqef31NyktLWXNmldO2GXXrKys7i5ChxEKhZg1634ef/z/UVm5At2ebDTQvH+PbnuvAV/DZvN26apF2iCl0SKis6WionX8+tf/hdN5MroBe6wjFHp07kF3klUUFpYRCNTw9a+PZ9u2D5r4G6KILgsqdQmRyKS4hutEQyAQiHXy/fp9D9Mch15S2wqUoVQ9SjnQy6SfoSPor0BHKlyN9ueVojsXAz27ehwYQU1NkLq6wejg5Wq0IeuHJp+60UGvn0fkc9TWXgj8B3jJ+g40HXglmvY9gC1btgDpZdeehlAoxEUXXcGzz76OHnBEY46OomOM9GBHB0u76dv3KpSq6NJVi7RBSqNNOBwOzj//fDIyAihVDvjIzQ2il4tC6I4wgO7IthIM/o0XX9zFo48+E/d6jQ3de++9fIyj/ESE7sR1J6+Ujf79H8I070Gp5ShVjt1uR2QHSi0EIDe3EngV7YTuh67/L6BHuRvRhulk9PJcBnq2NQD9yo8D/o2e/fwTmIhIBKUew+l8Cx3fFEQbvkNAOUoNRqlBhMNljB07lhN52bW2tra7i9AhLFq0gg8++AitpgL6/XWh20cNeqmuAu2/rMXh+EmXr1qkDVIaCcHhcDBt2i1kZWWj1Gx27YqglADb0ZH9t2IYw9F+iAJqax/h+edfibt8E2VmAQwfPvyEXqaLIp5vrV+/ZdjtI1DqErKzr8Q0J2MYbwE17Np1I/Br9FLaX9FG6H/RRmYKeumuBr0kJ2gDtQPd+TyDHh2DJkU8A2QSifSnouIlNGvvXvTy3rPoUXM1sJfbb78Rj8dzQi+7DhgwoLuL0G7oGfgL6Of//4Cb0T7EQ+jnG1X6mIx+9mXcccepXb5qkTZIaSSMFSsWMXv2V7Db/80553wXkTFopYDNwAM0yNtkoJSXSKR/k+WbE5mZ1RqiKcNvuWVKs07+EH37FvGd79zBP//5InfeeSPhsBZYPeecnwCr0WSFq9BKDnnAD1AqG62ANQtthOzoDudR9GyqGq28odAzq2r00utrhEJ70E7uP6Md3p8C8xG5lYkTz4hRfxcsmMX11w8CPn/CLbv2tCXJUCjEggVLOXKkGr20awKL0IzNLwAXAZei9ev+F7t9LG53ATNm3N71qxbxgpPS24kZGJso5s9fIiedNFVyc98TnbqgQGCrKFUlhiFWMG2heDyjm0jSN89Ie6IHxDZPGe/xjJZJkyaLxzNaTPM0USpX7Pah4vGMkkmTJsuAAddaCgsLpF+/G6zA2bAVUX+9FSB7QJQaKXCKpeowRGCiFfx6kRWRf74VCDvZisQ/Q3R6gYGikzAetYIjS6zn6xK73SsVFRVxylwgM2bMOaEyyfa0wNiFC5dJVtbZotU8RljbMus5Vwr81QqAdQtsErf7QKenFyEdGJtGMhAIBHjppdf46lfnkpU1kezsk9HpKb6LyGdACJEdZGUtZtq0m2LLN5WVlTz99GoOH17K4cN9KC0to6bGxDCeOiGYWfHQnDoN77Jt2wBsNggGy4AC6ur6UlX1Rd5/fyO1tY+ghS5/x3XXzUI7ocM0ZUgdICurhmnTvkxW1jjg9yj1InoWlY1mzP0Z+AMNMyQTPbvqD/wI7UcIopf5RmEYIzHNQZSXl8cp8z957bWSFv2FvRHbt2/v7iIkjEAgwDPPrKaubjjwF/SS7h+ATcBStJ/wUeB0YASwj1BoVvctvcazUumt98+Q/H6/FBUVtXsUFJW3GThQrC0iDsdhgQcEXKLUSLHbB8u8eYubyMvMmDFHlDpVDCMUm0UZRrlkZ1eJ1ztRioqKkn2LKY2obl1UPim62e33C1wuSu0Xw4gI7BS40JrJlAi8LzrpXsga3ZZZI91oMj6dZryiokIWLlwuDscQUWqERLXKHI5KMc0KSyJmqzVTqrJkha61ZkmVorXMykXrExaI210gPp8vbpnTiRZTExUVFTJ16resZx9Nwhid+RZaM6LhAnMFPhJwi1JOmT9/SadLQ5GeIaUBDX6c4cPHMX78dQwfPq5dfpyo8/3WW/9t7VH065eLy/Vt+vY16NevjuzsQbzyyussW7aKUChEIBDg9df/hJ49lVnnZQD9CQQ+IxQ6dMLl1mnMqosiEglQW/sGOhjWi4gfzXh6AZ2Pqh4t5XKYOXPeQ/uG6tEK3luBImy2M8nOPpny8nJWrVqGz/cpf/rTszidI/B6x+JwmPTt2wc9OypA038PomdZz1rXW49+PrXo3EmKQMDP8uWrjikznHh071RPPxF9xwcNGsuvf70bPfOJJmEMo5mXg9DB1P8D3Ak8QN++Lu67bwaPPfZQtzFe0wbpBMPSpd/jySd/x6FDcORIFocOwZNP/o6lS7+X0PnRwNbnn3+2kfP9IBUVV1FXdyZVVX+mvPyPVFf/ieee05H7Pp8PpVyY5i3AbES0hE0ksgeRuQQC9ZxxxkUnFMEhHqsuEvGhqdkuQBAJopfRRqDJCHPRy2jf4KmnnkUn5LOjqfffRalvkZc3D6UqyM7OjjEZJ02aRG1tCaWlWykrO0JFRRXaIB1CG7qB6KU7P5rccDsNCRo3ATVkZf2GV1/dh9+/74Sle0eR6uknli1bxXPPbSAYdKAHM5XoZJmCbkdhtDLHHvSzvhhYy7e//fUu0atrDWmDdAJBryf/lNrakej4E+0DqK0dyTPP/DRhP86KFYv4/vevjAW2+v3nEgodRKkXUeo0wEltbS7B4MOsWfNLa/ZzGNO8A9OMBsSeBXwOGENd3fscOvQ6Tz75H5Yufbhzbj7FEE+xQuMzbLYjiESNRjSVvA2dqfMy4LfMmTMSndl3gvVZQG7uLMLhOYwYcRJnnnlxjMl41VVTCIfdwEp0vJETHTv2HeB6dAaW8eg0YJXWvmfQcU7ZKGWSmXkWGRk/QiRCODzrhKR7R5HKM6RogLXIvWifYR904PrtaMZlOfrZL0T7frPIyBiD2z2ab3/7zm6PBVR6OS+NjuC8886TdevWdXcxEsamTZs466xLESlEqYbRrJ6xnMGf/vQiF198ccIdSyAQYPfu3VxyyTWWlNAHjb7VozCX66u8//4rrFnzCqtXb8YwngYUpaXjgddRqgCl9KhNZAemORmf79MTonMLhUIsW7aKNWt+iV6aO8KIESexbZs25jU12ejZzzx00sRVaPmfyWgR1aiRMjGMPrhcBiNHnsy2bQPIyHiWjAwvodAuysouJCvrHQzjVYJB/VuRyF50h3Upmjr+BHq2dRjt7D4Z+AQoxeG4ln79lgIQDk/kuusm8vrrf46V+c47b2TFikXd3pmloQkX48Z9iWAww1ryrUOTX6rQy7CD0EQGAbIxzRtwOGZgGJdTVLSuy947pdR6ETnvmC/iOZbSW+8kNRQWFophFDQiFogYRkSUqhQYIU7n2XGT5cUjQHzyySciokkOHs94MYzRVt4kiW1KbRKXq0D8fn8juvAYcTrPFhghSlWKYUQanRMSwyiQwsLCLq+b7kTj+m1cT6Z5hiiVLzoR4j5rmyqwQu6++2OLlDBY8vK+KjNmzIlLOnC7i8QwJohh+CQ/Pyxer1/c7iLxeCrEbh8qDQn8fBZBwhejeoNX+vadIS7Xtth5Tudw8fl8HSbF9AZE234qYv78JaLUZNGJF6dYz/aoRWL5hsA9FjFmuMBmcbn2d0voBekEfWmD5Pf7LdbV1phR0sZoi0CBeL3+JrFBzWNOGhurqMGKssVM8wFRamrMKClVLEpNPiapl9/vlzfffFOUcscxYAfFMDwnnEGKB7/fL9u2bZP585eIwzFEGpLxfUegWLKyPhGYLKY5KPZM9ODgAvF46iU/PywDB4p4vX5rsLBJPJ76Jsw4p3O42O2nW6yregGx2Hp1AudZxmqEKHWBxb5zicNxxgmf4TdV7zv6LtrtG632sl+gVCBisTKLRcejFVnPdah4PN3zLNMGKW2QRERk4cLlYrdf0ywb6HXicKw4hsY7f/6SJpld3e4Dkpt7ncyfv0S2bt0au6YOeJ0ipvmAGMYYMYwJolS+TJo0OW5D9/v9YpqDRKkpjQzYQVFqipjmoBNy1N0aKioq5J57Zondnm8Z8pFy8813yT33zI4FpNbX18v8+UvEMJyi1CYxDJ9kZ1fJwIERa7AwWdzuA00y9M6fv0Q8ntFis21pRB8PWR2ZVzIyxopShQILLUr4FsnOrjrhA5obt/1UQjQkw+3eKXCBNcg4aD3TkGWYJgq8KZAnt946vdvetbRBShskEWlQB/B4Rktu7rmilEccjpWSn1/fLLZkvLhcIy1jFJHs7CoxDJ/V2blkyZKHYsam8TKTxzNenM7hbcYyLFy4TOz2cQIjRSn9abePk4ULl3VRTfQ8+P1+KSwslMLCQiktLW3y3eLFK8XlmtpoploshlEuprlT8vK+Luecc6F4PKOsme6YJjNgp3OqmOYOMYyDotQmUWqy2GxOcbv3i8dTJUrpUbVS20WpXTGVjRM19qi6urq7ixAX0RmSXqYdbc2IKq14sqPWTHikwBfEZhsi27Zt67aypg1S2iA1QbRz83gK4gY6Op3DxeO5QAYOFMsYlTfyPU2Qr33tvmNGyO3xKwSDQZk0abIo5RSlRolSTpk0abIEg8HOuuVehd27d8f+bhxkm59fLw7HSjGMMaLUeIEBYpqDLZmfUTJz5twmMj+NByhO5/nidI6Uu+76TuzZu1zbLH/DaGt0XSCmuVzy8+tbDWjuzT6mxnWfamg8MNFyUvssv+BG0VJRuZKRcfExsl5djZYMUpr2fYLC4XBw+umnM23aLXFVm2+//UaUOkIoVEJNTTQeJgPNyKuktPTWYyR/HA5HwurdDz30GNu35+FyFeJ2b8blKmT79jweeuixzrnhXoZoIHEgEOA///kPIv1jqSv69VuK272OrKwLUWoCprnWkvn5B6++eoBHH30mprje8PwiQAjDiHYOZYTDPmpqXkLHQf0dnbLiHYLBrVRVLSFe7NGJIKCbikHc0ee5YMEsbrutALv9dUxzHToR4yQ0m/Jj+va9gQEDvE1kvVIK8axUeuv9M6QoGi+3xVvOyc29zlqmi/p5porDsVKuuOJAh0fILcnmnMjLQIkiWq87d+6MEU48ngvEMJximg/Ell71UluBKFUYIzjo/SXicAwRj6dAvN6JYpqDxG6/RtzufeJwrLTOOVUyMz2SlXWmJdS63Vr2qROljopS+0Wp/GMIKyInhoDugQMHursIMTQmHnk8F4hpDrKe73hxOofJt789T8488wKBPDGMUWIYrpRYiSC9ZJc2SK0hngFpcJS7LOrwmJi/6aqrNh1jPBozw+Ix86I4Vg+vYTsRde0SQfRZOJ3DxOMZL5deeo3Y7deIx1MiAweKmOZOUepLYpoLJDu7ynJcjxGlSsQ0K2JGKTu7SpQ6VZzOteL1+i0DtFUyMx9sxJLUau0ZGReLVoY+aNGGS6zlnxKx2UbLli1bmpSxoqLCYnFqwkyUWOHxlPSqgcb+/fu7uwgxRJfoPJ6D1oBiisB6Mc0N4nYXid0+zhpwHBC3+6g4nfvE6by+2wcIaYOUNkgdxvz5SyQ392pxu4tiM5nzz58Ra9SNR2kOh46diY7W442Q/X6/eDyjYqPo9AypddTX11v+tnxrYDBKCgouECi0mHRisel2Cjgtf89IAU8sxkipg+JwVIpShaLUqFhckWFMtIzNUIGiRhR8n8A663o7GjnGQ5ZfwiNnnXVBE3/UsQK69aJUmTgclb1qoHH48OHuLoKINF1p0IOLUaJFjkcLjLd8f4NEqUJxOCrFMHxiGKXW/0O6NWVISwYp7UNKo02sWrWMGTMmYBhXx5Kx3Xzz6bFkbNGUBJHI2wSDfwPWEwzuobp6FRkZXgzj6Zi/KRQK8cgjT+D3+ykvvxOfbwvV1dWEwwdPOAmaRDF//hLefx9gHfAvIpG3GDXqc8Dr1NQEEYmgRW6HYRh5DBiwCtP8JjAYWAlEEMkjEDiAyDxM82YMw4FSTiKRz9ASTn2Aq4hEHkKkDpEIhnEW2nc4Ey20akPLGM0EMtiw4RCDBp3Ggw8+RGVlZSMB3UOIVBOJHEYkQiDwGdXV+3A6nV1cc52Dw4cPd3cRgKYCvZGID5GjaO3B14A30KlE+iHioqamHi2u6kapU6mpyWHRouXdVvYWEc9KpbcTY4bUXiZU4+Nrampi+6KjNI+n3lqqiQa5jhGv199kKS66xOB277eWGEaJUqeKwzHkhA62jIfoMp1SToslddAKdDwoLtfHAqNEqd2xgFeXa78Yhkc8Hp9F+90vsFJgjMAEUapAYIC4XNtk4EARh2OlwDWiFR8OWjThqQKLLH/hQWumNcy6xkTRCf/GNQq6LBSn83qZOXOueL0Tm10zZF33WsnKOrvbl4mShWjb72400Lz3W6y6PGtmVCCwXOCI9fdGgYomAehKjRKPZ1TKxSGlZ0gnIDrKhGrMotu9ezfQdJRmGAZaIytsaeXlEon4YmrQ2dnZrFnzCobxNDbbYLKz5+F0vk5u7v/D4TBZvHheWg+tEZYu/R7PPvtbRHLR6SEAsgAnV14ZAgxEtmIYBuGwD5F5ZGXZCIf3AHkYxmAMYylKrUWpZ3C71+NwnEQ4PI9QaBfB4Cso9RP0yFmAvsDjwG/RyRbvxTS/iVJ90EndfoyeSf3BKo9gGF4ikcd47bU/IVKG3T4Vnb7iq+jU2JcAI8nOfqPXJGKMtv3uRlSg1++/hmBwBzr54nvW5ybgB8DNwHxgH3qm7ANmY5o3o5Qz5VKGpA3SCYjmWT9F3mX1ap0qIlGMGTMGaJpGQSkD07QDlYgcQKc2ILYU5/f70R2lk6qqhzh06FwOH55ORcU9+P0hiouLk36vqYZj6dYtH/fMMz+lrm4U2lhE0Gkp6oEgv/xlPlq1+UYqK8cCF3P33acza9ZdwKOIlFmdTxilQjgcpwI1ZGfXc+ed44hEJgOglI3s7Cy8Xg+macMw+mAYgt3+VbKyduJw3INp3ggsAJ5EC3T2QQuyQiQSprLSTnm5MGSIh1BoDoZxEkp9ZKm//5Xs7AfJzDyJ3pIzKdr2UwELFszCMA4BK9Dtw49+RsuBn6DVvTcAX0BkAkpdgmmehmneQSqmDEkbpBMMUXl6w3g6lmituZ8nEXzyySfAsWkUcnKyyco6AtxGVtZRDONqpk8/jRUrFsWMV1XVEmpqtEGE9xD5O8HgCB5//NleMYKOh0RnpVGDtXnzZmpr61Hqh8AUYA46f1F/4DO+851XAQOlcqmtVfj9ut6WLVvI3Xefhd0eAG5FZCummYlpBmIDg8cee4gtW94nLy+M0xkmJycHwzDo378/TmeYvDxh5871zJ37dQzjchyOP2MYbwN70YYx6o/IAOyIRBBR7NmTz+jRdUARsAel+uNwDCAnJ7tX5UyKtv1UQHl5OdnZJ+H1jrVWF0LoZzMWHT/2kbUvB5GdGMYg7PZvIXJfavpr463jpbfe60PqDMp1vFim+fOXyLZt22Jr1FH/06xZC0SpfEvaRit8ax21jZb/o6BX+pIa03Mb68nFYyp6vRPF6RxqySrVW/6a5Y38OB7RWmWXiVIHYjTtxnTeiooKmTlzrng8o6V5fFmiZRJpUPRwu0eJae6wWFxTLH9TSKBQlLpeHI6VMZbkrFkLJDf3umO083qLDymV0OBHOiCG4WvEhCwWnZ5+neUHPGCxI68Um83Z7e8Yadp32iCJJC8odd26dXGvHS+WqXlHm5k5phEFVTvqNVV4ojida3td55VInTc3Dm53kegUEFsEKizadaXo1AHDZM6chQI7GqXvKBWXa3/c2LCWiCutBUU3RuNBjMdTK337LrU6O20c7fa5sYBcr3eibNu2LaHr9lTEa/vdiWgAu6b4R43RFIEFloG6QJTaaaWaKRalXOLz+bq1zGmDlDZIMSQyMu6s33K7i6w4pR3idh8Vw4gGYpbEWHm9LR6pcYeu1Qsap4eYKIWFhXENlt0+X+ByiyVVJDrY9VIBt8BYgR2ilN8y5tF8R+2f5bbFttRxY6PFNHfGBhK6PP+OxTTFG9T0Zj27VEIwGJRBg0ZbLLvzrcHCYsswHRAdIO1vlOpllLz99tvdWuaWDFLah3QCYsWKRUyfHk0lruOKon6eRPHRRx+1eUw8f5XNNhy7/VaCwZn4/XuIRLBiKGaRkXEthmFax/YOBzho4ofIYSoriygtLaOs7AilpWVUVBQSCvmoqakhylQEiEQChEK7yM5eSEbGRuBidIrxe9E+gQxmzboauBmRc4lElmK3ZxKJHKIjfpqWNAij/iyAkSNPJhi8F5EQOgNpBHiIjIyrMQxH3FTm7dE27ElIpO13JZYufZiSkpOBW9Dpyv8E3IcmNNwL3IBS+hlostFhxo4d202lbR3pFObHgZ6Wwrw5AoEAPp8Pr9fb7k4jEolYNO+WsWvXLiZNutkS9myASIjy8uGEQkcR6Qco4EaUmoHDYcc0a1Dqki5NqdzZuPDCL/Lee6DZUGOBh4FfkJmZS25uBL/fj2m+RzD4C4LBV4A8IpE9QD+UOgN4CqW8RCL3AdsxjP8iEhkMBIH7MM2hmOZnTJ9+Gg8/vLTdz7bx8X379rVSq+tyiJTh99cAN1Fb+waQi8hhMjLyCYc34XYXoFTFCZPKPJG231UIBAIMHXo2ZWW/RBNeXgJ+Y/29Ez14eBPDGGYZo2lMnBji3//+a/cVmnQK8/SSXQvo6LLK5s2bE7p246WoqFyNy7VTDMMlLleh2O1zBK5toqGWClpbyURFRYWY5kCBwVagotMiKGwVw/CJ231A7PZrxGY7JZa0UGfyHSZaS+6AFdDoFy0Ls09uueVDMc2KJjmq5s9fIsFgsInmXVvZXeNlBZ40abI4nVNiz83pXCtKnSrZ2VXicJSIUmsFdothHBTTPE3+9re/ic/nO2GW5xJp+12Fbdu2iWkOt9rVBdbntwU+FjhXbLY8UcqVUsKqIi0v2XV7p96Tt55skFpLT54IEo1Wb5pNdrSVTdYrNptX8vPrm+TvMYyJYhgemTlzbq9xgIuIzJw5V5S6ImZ0tfN5isBKMYxS8XjqLRJDXkyYVHf6Z1vEgZDlkC6K/e9274v5ojyeevF4LpBt27Y107zTqeWdziktGvhjfXwHRKnJYpoPNGJf+i2VB62L16AYUSjgkvHjv9DhdtQTkSpKDSIi8+YttvyMuy0mZoHAqdbgJ0/mzVssPp9P3n777W4nMjRG2iClDVITHC+xYefOnQkd1yAMOjmWWts0d8Tt9JzOtd0qZ9IZiArJakMTEsOol6j8j3Y26wys0SyfbvdRy8BUWUagQKDYMkgNM6Qvf/mTGDGiMd1a13Nxk3QhpvlAXJJIPPafx1NvPacG2SctM7RCdIK3LdIgCTRF4GSBy08oineibb+z4ff7xeEYIrBJYJFo2acS6/lsFJvtSrnnntkp+T61ZJBSYyH0OKGUOkkp9RulVKVSqkop9Vul1MkJnistbGd3crG7DckIjs3Ly0vot+rq6igq2ovL9SJu92g8Hhf9+4/Ebv8xweCLhELaaS7iR6knmDbt5pjPI1FVg1SGz+dDKScOxylApbVX0FH1/bHbq1Eq+hqWA2VkZNjIyMjBNG8BHMAsRHwolQVcAUzns88MlDJiZIJbbrmOX/7yt8CTKDUIwJJvepra2t8j0u8Ykkhj2acGBIEAItlEIg3H9+37LWAtcBU64dslwGi03NAT1v10LMi6pyHRtt/Z2L17N8GgHRgEvI5+Dm7rWw+h0GOsXv3fDB8+rsckSezxBkkpZaLTWY4BbkVTTQqAt1WUWtI2XgAmNtu2J72wKYL4HRHtYrdpZljiv2WzDSQjwxbrfPv3H45puolEJh/D9OtNWUej6hSmGcA0M4HDKCXo5nWYnJzhlg7dYi64YBwic2PZe03zDrKyIDPzXZQ6CzgV03ydiRPrOfnk7zWpt7vuugXDcKGUGwjHfl8bpf6Ew2XHsO8ayz6JhKiqeoiysvMRuReRXfj9P0QkRChUTCDwNbTadz5wGLgO/aq50MyuBkTb0e7du3v8gCIeEm37nYHoIK2yspJnnnmOSKQcPVDIRT+bqJ6koNQYYATh8MvtlgbrLvQGOsxdwHBgtIjsBFBKbQR2AHejhw1toVhEPui8IqYWGndEjY2S1qNLjDacKMuo5d8qJTu7no0b38fv98fYYIFAgAULlvLrXxeTkfEuGRlewmEfq1fPBlbx8MNL23m33YuotNLq1XMwzafJznZTX19CTc0ClAogchnhcBm3334jDz30IA899Bhr1lxCJJKLYRxh3rwbWbBgFvv27QNg2LBhOBwO9uzZQyQSaVJvSh0hK6ua2lobDSnnDwCfcfvt045h2zWUbTZ+/1CCwT3A31Eqi4wMH7W1s1FqNFCLYZyDZnCNQc/k5gC/QOvpHSIjwx27bjh8kEBgH5dd9g2UcgGHufPOm3oNA687GHahUKgJ87G6+jNEzgFuBJ5HDxJ86BlSJWBH6w0ewWY7DZGnWbPmEhYvnpfazNV463g9aQPeAv4dZ/+7wLsJnC/A9zry2z3RhxRl1c2fv+S4fEiHDh1K+DcT8VdFSRYeT4EYhluUiiafi/T45H3xFBEWLlwm8+YtFpdrpHg8FzQhAyTCfIxX/5pAMjUWwKrUJlFqskyaNLlVll00K3DUxxetd7f7gDidI8TtLhCP56CVibbMiv4vFhgpGRljrcy1Dc/Wbr9G7PZxXRJ43R1oT9tPFhq/Qw0kk62iVLHlPxokcIUVRF0icECUmioOx8qUzMZMbyU1AAeB5+Ls/3/AoQTOF/SQrw6oQS//XZTIb/ckg9ScVefxjJJJkyZ3WN5l9+7dHfjtln8r+sI5nWsttl1IDKO8UUbU1HqhOoLGhuZ4SSXx6r+xfp3Hc4G4XAUyf/6SNp9pUVGReDwXNFGQiG5O5zhxucaL1xsSp7O2SeZRwyiQe+6ZJQsXLo89W63oMEjc7v3HJU2VymhP208GmpNPopl+tc5hiWhpqe0C91ghBSNEqVHicKyMSTqlWv23ZJB6vA8JyCOa56ApDqMXVtvCy+gUmJcD09FSuX9XSl0S72Cl1HSl1Dql1LqSkhLKysooKSmhuLiYI0eOUFRURDAYZMuWLUQikVhU9/r16wEd5R2JRNiyZQvBYJCioiKOHDlCcXEx0evt2bMHv9/Pp59+SigUYsOGDU2uEf0sLCykrq6OHTt2UFVVxd69eyktLaW0tJS9e/dSVVXFjh07qKurY82aF1i9ejO3374Gw3iPO+74Gdu357F8+Tz++c8X+b//e5VFi+ayf//+hO7J5XIlfE8VFRXcddctFBb+g9/97gds2/YB11//FWw2G+vXrycQCCASwjCe5oYbbPTrV8dXv7qRk09WjB//GWPGHGT06G1ccIFeroreU2FhYdx62bBhA6FQiE8//RS/38+ePXtS4jkdOHAAl8vFgQMHeO+9Dzn99BVceGEdgwZVceWVVfTr9zhVVVUEAoE276muri52T3v37uWRRx7nnnvm8ve/b+brX7+C666byB/+8Asee+yhWLlauicR4ayz8iko2M1FF+3F7fZz9dWfYrMd4JZbvkhFxR5uuOEdyssrueuujWRkGNxzz06GDs3hO9+ZzqJFc/nnP9/gL3/5MX/4wy+YPPlqTj45h8mTd5CdXcd11xWSkeHljjtuwefzpfxzaut96tevX5e2vc2bNzN06GmMHx/izDNLGD26D5MnjyQ/fy9Tpx7ANPtyzz0BlFrCnDkz6NOngvvvvxu7/Q6mTNmC3b6fL37xJ3znO3dQXl7eYh/RlffUIuJZqZ60AUeBVXH2PwyEOnC9HOAz4F9tHdtTZkjJElRtjK1btyatfHqEPl7c7iLxev1WJtmpVtyOFg3tTUs+yVBcb1z/ydAmbOkagwePsXTzplhU75DAFrHZrox7/c5oa6mGZLb9RBCvTk1zucC1AoViGGHRivDjRGf0HSEwQMAphlEgDscQWbhweUrFhtGLZ0hH0LOk5sgl/sypVYhINVoM6vzjLFfKIBmsuuYYOXJkUsoWCoX48Y9/TllZEeXlN3Lo0LlEIrVkZeWjM45eiGFc1m6tvVRGY6JHFCIR6uuLETkcI5W0RnuP1n+y8lvF0ze8/vpBFBeXAm8CZ6Cp3hcBXyMU+oBvf/vOY67TPD8WEFfnricjWW0/UTSv00gkQN++l6Gzwl4JfA6tdTgEeBtYi1KbgUvo0+dSsrImYBhGzyCUxLNSPWlD+3yOmc0A75AAqaGFa/4YqG3ruBN5hvTJJ5+06/dbctJHR+amuVOUKhfYYQVgDhPwyDnnXCgVFRXtLl+qo2FGUiLZ2VWiVKEodYWY5iBZuHCZ5ZdpWf0gWv/Jzm/l9/tl27ZtMn/+EsnNPcUKzPWJUlWiVLUoVWQpR7esGJ1oWoueiva0/WShvr5eFi5cJqY5SAzDLYZRIJmZHunb9wzJzf2bGMYoUWq/5VOqtwKpD4phjLFWHlJrdkovJjXMQadEHN5o31B0Wsv7OnC9fujUmG0as55ikES6NuVEFG3JEzU1lBHJzCyzWFz7BEaJ3b5RnM7es1TXGNG6cTiGiFKnxpzQbvd+sdvHHcNca+lZdcZgI9pWXK6dMaUIKBelqsQwRHTai1zZtWtXq9dpPhBJp6PoOPx+v8ycOVfy8qaIy7XfkowqEbv9GsnK8ohhjLKMUXRZNSRKhcUwJloGKbUIQb3ZIDnQsraFwFeBr6CTyO8Cshsdd4pluL7baN984KdoMv8l6MDaQrRfqk2mXU8ySMketSaSpKwtI9g8T5Bmb4WspHP6RepNvofm0LJCBeJ0ro3J9EQpvUoVNmG8Na+HxvWfzMFGcwOXmfmgNGSILRaYL+CVzMwx4vGMkpkz57Y5g21M6Xc6x/X4rMBdmaAvkXAIt7tA7PZBAlsbGaSIRf0enZ4hdfUGnIzWzqgCqoH/AYY2O2YomuK9vNG+a4B/oyPI6tH07zeA8Yn8bk8ySFF01Sg13si9uV5d42M8nnqLSiyxpYaGTjq1RnfJQrzltiilNyq62tYSXOMltmQMNpqXKT//qGWURgkMFLhcbLYt4nBUNllmbO33Fi5cJnb7OFGqwKIrF4jdPk4WLlzWkWo7odBSOITDURIjAXk8F0hWlleUmiKwU3R24WJL2+47Kame36sNUndtPdEgJQttjRKbzn6iit6jrZfKHVP0jr5wbvcBK5izOBbQ11sFV6NoyWg3nyHl54fF5dovHs/oWD18+OGHxyyHzp+/RLZt23ZcddXSEqDTuVGUcorLtV+ys6vEMMqtdCEHRalR4nRe2+KSot2eL/AlgaJGoq9TxDQH9cjn2lUzpKYDNp8oNVJgr0RVvRuM+0Bxuc6LqebDGQIugeGilDsl1fNbMki9gWWXRpLQHjHTc889t9XvGzPJqqtXUVOzGZF3gX8i8nd+/etili1bFWN3Gcal2O2XA+eSlXUSImFKS8dx+PBtBAI1PPLIEz1Sy641xGOkifjJysomK2sxkUgp1dXV+HxbKC+/E7+/OlYP//M//8vq1bpODeM9RN7lhRd28OKLvz4uJlvLLLlFmOYgbLaB1NQEiUoTKeVFKSew4BhWXygUYu7chQSDR9FhgVcRiTyEDvV7ltraELt37+5wWbsLbbX9ZMHn8yGSSyCwmrKyixGJAF8EPgFeROR/0Qs651JTcwDTvIm8vNdwOn+Jx7MZp/O/cbtzefTRh3oGw45eIK6axvGjI2Km0SC6lhDt2MLhb1NT8xLwtKVrVonDcQoZGc+wZs0vqaur4+GHl1JUtI6PPvoN9903DaV+STD4AfBbHI61OBz/6THikO1Fc7o1fJ5bb72YGTPOIBA4n0BgAnAtpnkhDseHrF69mUWLVlBVVXncVO9Ey6TUJdx55zgcjqOEQiXoDL8ZAIj4aNBL68d//vOf2O8vW7aK114rQat4vW99bkZkldUW+h9XObsLbbX9ZMHr9eL376WmptAazH2I9i4UAnMROQ+b7WUcjh9TXx/m0KGJHD48jSNHrsPvfwJ4vIl6fo9AvGlTejuxluw64hSvra1t87r19fUyY8YcMYwCyz/ka+KQbckn4vGMijGJenOupMaoqKiQGTPmiMdTYEnwFIhpDhKn84MmeYk8noPidA6X4cO/kDSqd0to7m/UWnnXx3I7RfMtORzLJSvrOwL9xOU6J7Z86PGMFper2GJ/1VmOdp0HCtaLwzGkRz7PRNp+MhDNd6TUViux41xLr67EYtGViFJTJTPzQVHqVMnK+nvCGobdDdJLdmnEQ0cDK/fu3dvmtW02G4899j1cLkVe3lE8Hhc5OTmAspaDjlUWj+YPyswcDESoqnqIQ4fO5ciROZSVHWHBgqW9bukO4NFHn7FmE/8E/o+jR/+LYLA/dXVjMYyGEW5GhpeMDBeTJo1oElgLtFinHYXD4WD48OGxEfaKFYu4++7TMc0vIXIGcDF2+yhqal6htvaXQD5lZZ9RXj6Q1av/w5EjisOHoylHDqM5Ry4gh7597+fee49VIO8JSKTtJwM+n4/s7JNwOAYjshf4A/A40ZxHOrXIU9TX/wqRAP36nYbH48LtHo3L9SJFRfuoq6vrkrImC2mDdAIhno+ooyoOiXZ6DoeDadNuBu4jEjkEtB65n6jvqSeiJR9ddFCg1A8IBFZz6NC5VFZ+H5FS/P49lu9AQ6cIqWL48GFdroZgs9l4+OGlFBdv4p57rsDthqNHVyMyAr2M9CmwkVDITnW1n/r6UkTqUcptLdGFgK0otZt7753EQw892Cnl7Gwky+An9juHMc0a8vKqUSoXnXe0EtBtQsRu/Z3BoUOfo7r6YQwDbLaBdFSFpVsRb9qU3nrXkl1rAaodDaz87LPPOvD7idGS9dLQtRbb7GAT5e+eGJfUVoBwlJHYVMNPBB4QuFLs9u3HLKXu3r27S9UQ4oUL7Nq1S5RyWoHM0mgrtlheJ4lS18XuRzMoJ8vs2Q90Shm7Cu1p+8eLKGVe69O5BQoFDopSBy39ulmWwvcFVhDzODHNZSn/npCmfZ+4BqktH1FHfEg+n6/d5Ug0BqojvqdURlv1Gw2QbTDAYnXgtQLfEaVcVs6kBqMTrf/OjitrzZi+/fbblkJANBAzLFBvfY4SGCKmuUQMY4xF9x8jpjlctm3b1ill7Sp0pO13FAsXLhe7/RpRqlBgoSWoukVMs0LgOxadfodV5yVWEPPAFmn4qYK0QTpBDVIiM6COqDh09ksZj9zQE1WjE52BzpgxR5Q61ZoNSrNZ4Xh5++23m9xzV3WKrRlTn8/XaIZUKeATKLVG8XnSt+/MGCnF7S5qohjQk2WEuqruG7ed/PywuN1BcThWiFKjLK3HPCsQNjoYCMVmp9OmfTtlCQ0iLRuktA+plyMRH1HUN7Bx47v86lePsHHjuzz88NJWYxdqa2s7tdzt9T2lKhL10a1atRzTrEZkK3AIKMc0MzHNAEpVcf755ze5586uf2ib8OJwOBg0yA3cCRxAxxeFgRWAG6XeIxz2YRgOlHIgspjbb/8mjzzyRLtCDFINXVH30LTtKGVgs2XRr993cbvXofOJ5qEV0SJoERrQ9Z7L7Nn39JjYo8ZIG6RejnipDqApIysah3TmmRfzzW8u5swzL26zkxgwYECnlhvix8P0tDQUidQ/QP/+/Zkx4zb693+A3NwKPB4XpllDJDInrgHuivpvy5ju3r2burp64CO0CteFwOeBUcCvMIwy4OImzw7kmIDenhZj1hV1Dy23nUikCqXq0azFHdbeDOtzJxkZlQwbNqxLyphspA1SL0ci+WmWLVvV7k6is9k7gUCAvXv3snjxPIqK1vHeey9TVLSuzZlbqiGR+o8OCH7xi9eor9/HkSOTqKoqAD7fogHuCvZUW8YUQCQHGAj8BXgW+DNKLcQwBmOag3jrrddjz27x4nn8/Oe/6rSA3q5CVzHX4uVBOnr0QyKRWdjtNnT3vQCIzqq3AveTmZnR2mVTGmmDdAKgtZlGR+OQTj755E4pazzViEceeYKTTz65xyzTNceCBbOYMmUgzWcLUUMTHRDAu/TrtxGncyN9+57DDTd8jTvvvCluLEln1X9jtGVMhw0bRk3NQXRnmIXOaXkKIvVEIgcxDD1Sj8YydUaiyO5AV9R9FCtWLGLatDH4/edw6NAwjhy5mWDwAxyOLHSmnHOB64CrgW+QmXk2OTmn9Ji6PAbxHEvprfeQGhojniM5SjmOOp4bqwK0xmbbuHFjp5SxO/I2dRaaM9TipWvw+/3ido+U3Nx/i8dTZdV9RExzpxiGSzye8XET9HVW/bd8D8cSXqJKApp6PNVSYYhYJIfLZf78JU2u1VvSm3dV3UexePFKyc39uvTp8zdRqsgijVwuOk35xwK7BT4Qm+0z8XhKekRdkmbZpQ1SPFRUVIhpDoqlBjCM0bFEcV3dsHtLhxVFW8Y1GAzKOedcZMWRTBAokMzMB8XhOGypaU+I5YTqbqPc2mDG4ThsxUyNEpggSo1ukd7dmwYcXYGysjLJzHRZcUgTrFijBwX2CHgFzhCl9oth1ItShSmZaiIeWjJI6SW7ExyPPvoMIueiVYP/ici71NQU4vdf0yqbbf369Ukvy+7duwmH+2MY7ib7e9qSDiQmyXTZZV/h44+zgXfQabn+QX39dgKB7yNSC1QgUoNS2ccsoXZG/beG5jJC0OBjcjiOkp//CG73h7hcL+NyvUlOTh8GDx58zHV6A1GlK+v+i1/8OvX144B/oQVq/wFsR+cVHYpeLr0UuBilLmPq1ME9qi6bQ2ljlUZHcN5558m6deu6uxgdRiAQYMSIcxF5h5oah5VWQCHiwzS/RHHxJvr373xF5lAoxLJlq3j++ZcoK6tA5O84HKeQk5NNVPdOqUsoKlrXY/xIu3btYtKkmzGM9wCIRAJEIj4MwwtM5o03nmLixKsQ2QjkIFKPVr8+BFwEjAQ2YhinAIex22/C4XiT999/heHDh3fTXR2LBx98iNWrN8cMb9THdNttBcyYcTterzfuMwsEAvh8vha/TwNKS0vJzx+LyDvAqTS4/H3oNqJQKpe8vDVADRkZt7Br10c9oj6VUutF5Lzm+9MzpBMYDU7mfHJycvB4XLhcuXi9Y8nOPony8vIWz03mKLHBqf9P7PZ7gZUEAsVUV/t7ZOwRNMweQqHimEBsefnNlJaOo7r6M0pLSwEXSg1CqWyUykQnLM5Ax5TsRKcbeK/RrHVvjCbe1TOkltCcsAGfZ9Sow/ziF6+1GmcUnXEBCefgShV0Vd1//PHHiOSiBWkr0FqAghZXtQHnolQVhmGi1BM9L9VEHKQN0gmM5rRepQwyMmxWIGrrqtHJSlLWfGkrJ2cRpnkG8FVqas6lNepzKiPKUPP7r2mUz+YfiPwekXP429/+BZQhcgA90s3BMFxALZpS/QKGkQ9gCZOutFSzNboqSVxLiLIhR4+ewG9/uxaAa6+9gJtvvpbt2/OA1kMIOpKDK1XQVXW/aNHD6FijMFAPfAx8BmxBz6SLyco6imFc3SPfkbiI51hKb72L1NCaTEtHncyffPJJUsrWONV507w+fnE6x0lhYWFSfqc7UFFRYeWzKbTEMEtEKZ8oVSgOxxAZP/4LotSXRKniRuKjXxKbzWulCfc10fJrzHpMVv13FPHajdN5vZjmoIRIKT2Z3NDZdV9fXy+zZi2wpIFmCpxtkRkmWp+jJSMjV2bNWiB/+9vfulRbL1kgTWo48ZDIKLSjTubTTjstKWVsKfhSxI/NFuyxEecA5eXlZGefhGmeDGRiGG6U8qDUqdTU5HD22acxcWIIpc4CRqPUWYwfX0dubj9Msya2hBpVbWg8a01W/XcELRE2lHqC2toQSmUTiQQIhXYRiQSOIaV0NPYtVdDZdb9s2SpeeGEjMAK9PHcS8Fvg99bnSYwcOZxf//r33HTT0oSUVXoK0gapFyMRBYaojl171RB27tyZlDImomTQU+H1ehEpp6ZmL0r1pyHtdxkQ5n/+56/89a+/o6RkM3/841O8//6feOutN7jrrluIRGYTiRyKLaFGIrO55Zbr8Pl8BAKBpNV/R9BSgKvOwdOfysr7Yj4zndtpISKHY8a0pwfIdmbdR411nz4/RCc1/CWaUTcWTXoZA/yA7duLCYf/1GPll1pC2iD1UrR3FBqP1tsahgwZkrSy9gYqcDw4HA6uu+5qYL5lhEDEB8zGNG9GKSfFxcU8/fRz3H77XL7ylTmMGHEukUiEadPGNKkPTRR4NTbTffXV33fbiLhljbVDZGRUUVu7g0jk54j8FZG/EwxuZOTIBqWNRPX9UhXJbPvNETXWmZkjyMi4FC2cageUtVUCHkQ06ai6upqMDE+PmV22hbRB6qXo7FFoWVnZcZ3fGB2dpaU6AoEAd931Lez2jcDFgDYupnkapnkHcISf/vSlY2axzz+/FcPIiNXHLbdcZxEF/hE7ZsOGqm4bEbc0qw2F7iUUqkM73ucicg4iz5CV9SRFRftinWVPnxUns+03R3RWXVn5AOHw29bec4DFaLp3PZqNWQ2Moaamnupqf4+ZXbaFtEHqpejsUWh2dna7z2kphXcUrc3S2jo3ldDYd3fllTNRKoO+fbMYMOBx3O51OBzTEbmPW265jl/84lXgB4BJKLSrSRAs6Of40kuvHTPT9flu69YRcbxZbZ8+H1tB1o2DOHcRCr1E486ytLSUSy+dxI03ntIjZ8UdafutoXHb1u/ASdTUfAz8Dh0w/Qe0qvcP0YZoLvBVlOoH9KemJkgoVEJPmF22hZ49BE2jRURHoatXzwaaBi1On378o9D6+vqEj40Gvq5Z8wo6h8th7rzzJlasWNTmLOh4zu0uRH13hvEuGRleHI6DVFdPp7Z2CpmZp6DUEaZN+yZHjhzm0KEIIj8EfgPkYhiV2O0343AMaDTaPXamqztF3cl3R6BsdFa7ePE8fD4fSilGjDgf3Ym60ctL+cAz1NdfRCSi6N+/Pxde+EU++OAjdGxNGeeffxY/+9mzuFwu/H4/dXV1Kftco2hP228N8dr2LbdMYd26QrR6x0j0nCELWIZWZHgem+0sQqFdiPhQyovIIUKh5cyYkfqzyzYRj3rX1oZOePJ14G5guvV3QUeu1ZO3VKd9dyQTbKLYv39/wsceD8W3p9GDW9Pj83hGS2Fhofj9flm8eKU4ndcK5At82RLMjGZb/bKY5qBYZtV417vqqk0ppe+n05mPFqWqBMqt7KVifY6Rm266XSZNmnwMzR2ukMGDx8RNkZ6qaE/bbw3N27bbXSQ5OZMs3bqjllBtdKuz9o8Wl2ubOBwrrdTwE8QwXDJ//pKUrrPm4HjFVdHaFU+jU0OGrS1ibdH/DwBPAacmet2evKW6QYqiM9JFHz58OOHf7qhgak8UW20prqqxenr0vtzuIgGPwBar445Yn1skM9Mbu794Rvn882eklFH2+XxiGE4rlqqqWTpzp2zYsCH2vU7Rrje4X+BycbmKe8SAQyTxtt8amqYnr7cMzGiB0Vb80XbLCEXbRYmAS6C/uN1FMQOWm3v1MarqPQEtGaQ2fUhKqRFKqd8Am9C5ijegcxR/C7gKnYjjW8BK67tpwCal1GtKqdQR3TqBkQiDrr0+msOHDyd03PGQK3oiPTgR3130viKRGjSVt8A6KmJ9FhAO92P37t1AfH/NzTefnlL+Fo/HwwUXnIN+/atjqhNKLWDSpHOs9qKlkqIQCaBFfZ9ExAn0jHikRNt+a4i2AaWyqaxcQE3NJiKRP6F9RjcCs9AiqmVAkfV/iNNPH41hXE0kMgnDuJoZMyawatWy4y5PqiCRxdotQCFwG/Bb0a2oRSilHOiMUbOsc7OOs4xpdCI66qMZNGhQi981RuMOurFh0YKprTthj+fc7kIivrvofYmUozXKygGPdYUISpWh6b0ajf01USM1cODAlPO1vPXWG1x22Vf44IOzgDwM4zDnnHMa3/3uItxuN1GppAaj5AMGAK4m95KR4SUS6T7/WFtItO23BqfTSXX1Z9TUnIWWB/o7kI3ukpcAjwNfAIYDe4E+KKX417/+is1m67XCtImw7K4XkfNE5KW2jBGAiARE5EXRdJupx1/ENDoTHUlfDsQ6xrZwPBTfnkoPbiuuKnpfSj2L7oDuRXfOApQCs8jKsjVRqQiFQjzyyBNcfvl1XH75dB588KGUi87Pysri3//+KyUlm/nzn5/lnHNO56OPNnHVVbM588zPY5p9gWlo/T4QiQB7sNmOYBgNabdTPR4p0bbfGhrSvvwYTV4YhSaC1KIJH/+FTi+xCPgfoIaZM2+nf//+7Y4Z7FGIt46X3nqXD6kl+Hw+cblGitt9oN0+mnA4nPDvHA+5ojOJGZ2N1nx30fuy2wcKnCowUpS6QJQaJVlZZ8u8eYubHN/cj5SfX5LSvpaWCAzZ2YPEMFxiGKPEMFwyePAYcTqv7zGkFZH2tf14aPAflYjDUWLp0+23Mu6WNvIZjREos/4eIX/4wx+SdAfdD7oiYyw6gutnwNxkXjdVt55qkKKdodM5TAxjdEy8c+DASELpy0VE1q9f3+7fPR5yRWcQM1IBFRUVMnPmXHG7C8RuHy1KOcU0h4vTOSLGnIpH7njggfUpS+5oTHBoTGDQ/7tk06ZN8vbbb4vP5+uRA46OtP3GaE58cThWiFJTBXZYxqfYSgm/3GIs7hBwydq1a5N0B92PlgxSuxP0KaW+1dJXwBeBG4DDIuLq8LSth6CnJuiLJlVT6hHKy69C5O8olYVpZpKTk9MjE+J1F44n0Vzjc5cv/z7PP/8xdXWrqKvTsSUwl4kT4ec//yEXX3xbLNlfY0Qik3jvvZdTytfyzjvvcNll9wCfxvl2NG+99RyXXHJJk70nUsK+hsSYOk5NJER19Spqal5CJAwEgOuBhUAQeADDeJuqqr29pm5aStDXEa/oC+jF7taQVoDoBiTyUjdo3OmXwW6/iZqaeYg8QU1NCLvdj8jcNoNn169f3+U5eVKp02qLDBKvrNF9TqeTRx99JnauSBmBQBCRd6irywX6o5QbkRd4//1z+dGP1tCc3HHbbetZs2ZISpI7xo4dy7EEBqz/D1vfN0XjhH2pjuNt+/GILw7HdPr2/YSKireIRPKBPwJr0QKrfenbt29yCp/i6ChNR7XyXQTtkUuji9AeplxzKnVOziJgFcHgZUAEEWH69FvapBR3pTFKRbWG5moM4bCP1atnE4k8jGEYTYzNN77xJUwzm1deeR3Iw+/fRyTixuF4A6VshMN7qamZiWZZ9UMvWkQAL3Ayr7zyG26//UZeeKGhA1uzZkjSVDeSiUAggN/v5/zzz+LDD6ch8jxKDUITGaZxwQXj8Hg8bV4nlZGMtq/fr1WsWXMJkUguSh3hm9/8Eq+9Noaamqut2VItSilMcyoOx5spyzpMJjqyZPcOx86QFDppxzB0usvLReTjZBQwlZEqS3bRJbio3lkDzfg0Hn54aZNjmy8XRKFz10xmy5b3E+owPvroI84555yk30tzBAIB7r9/Ca++uo+MjB+1eX9dgZbqMBz2EQicR1bWBJR6hEDgJ9TW/gERA6jENG8jJ2clpaXbEVkEfIRhnIJIGSJ+4K/oNANRZeeDwOex2zP4wx+e5X//9x1eeklLDN166+XYbJkpI6HUfNAQiZTTp4/BgQNlKKUHERdcMI633nqDrKyeHQmSzLbfeCYNxNqVzinlwzC8iPh73RJ6S0t2ySY1PIMe2q1N5nUT+N2T0GJglWhS/2+BkxM8Nwt4DChBL9i+D1ycyLmpQGroiJpBMuR4jpdp1Baizm6PZ5QYRoEoVSAOx0rJz6/vdrWGltQY8vPDYhgFkpV1t8AggSsspYISgX2i1FQxzeVW9titAqNEqQpR6oDAGQKXWw5tsRhXUwU+L5AnbvcE8XpHy/z5S2Tbtm1SVVXV5ffdGlpqU7NmLYgRGHoLOrPt9zSprI6CLsoY+4b1eXqSr9silFImOqpsDHArcAs69P1tK0i3LawB7gK+C3wZbZj+opQ6u1MKnGR0RM0gGfmHPv00nsO6bTRXhGhJISK6JBaJ/B0dvf5Pamo2U129qs3762y0pMYQCpUQiRymtvYg4ABeRMeXGMBA4Clqa3+FDucbCeQish2RDLTi90fAucAFwCXo2KQs4F2U+hci7/LCCzt48cVfs2/fvi6510TQWu6tX//6Dc4///wev0zXGB1t+y2h8TvQW3ODJYx4VqqjGzppRwT4MJnXbeM3Z6N19EY22jcMCAHz2jj3LPTy4+2N9tmAbcAbbf12T50hNT63o1Tqmpqadh3fQO/VIpoez2iZNGmyeDyjjhHVbKrzFRbD8IlhhESpg2IYY8Tr9Xc75TneSDYvb4rAAIH3BCZaM52wNds5KoYREcOYKLBWYK+lW+a39Mo+E8iTrKxZotRwgXMt7bIdYhg+yc8PN3muZWVl3XLf8ZCIfl9z9GQaf3vbfkto/k40fwd6av0kApI1Q1JK/ayF7W9oPTsBapp9t+Z4jGYb+ArwgYjE8gqLyG70sPqrCZxbD/y60bkh4FfAFUqplKe2HK8SQkcjvg8cONCu45srQvj9f+L99234/V8/RiGi8axPKQPTtAOVKOUCcgmFNne7WkO8kew3vzkE0xyCUkPQ7Cgf2hdkB6qIRPQMSr8id6Fz2zyOHjtlABFMswSX6//Iy3scpYZjGHmYph2l9KsanRkWFRV19S0fg+jIXqfCSCz3VuNcUdHst6mmONEW2tv2W0JrKim9Wo2hNcSzUq1tNFX3br61+F17f6cd5TkIPBdn//8DDrVx7q+AbXH2X4/uNU5r7fxUmCGJdI+aQXsUj5vP4qKzHh0oqWc8jUf/Pp+v2awvItnZVaJUoRiGRzyeUSkTPOn3+6WwsFAKCwvF5/OJxzNaTHOnwAMCUyyfUL3ARstHNFhgpMAia1Y0VWCBKDVV7PZhMnPmXPF6x4jHM14MwyWmubNJwLLbfUBcrgLZuXNnt91zvJH9pEmTxels2/fRG3wkyVb77ilK9skESfYhqRa2lr7rTOShmX3NcRjIPY5zo983gVJqulJqnVJqXUlJCWVlZZSUlFBcXMyRI0coKioiGAyyZcsWIpEIH330EaBjF0AzdCKRCFu2bCEYDFJUVMSRI0coLi4mer09e/bg9/v59NNPCYVCbNiwock1op+FhYXU1dWxe/duHnhgNv/85xv85S8/5sMP/8Ldd99KTU0NO3bsoK6ujsLCwrjX2LBhA6FQiE8//RS/38+ePXsSuqeampqE72nXrl1cdNEXyM93cPXVn5KZeZTp03eh1CBmz76FSMTHbbetJyPDy5Qp11JRUcGDD85h4MDvMn78Jk499RDnnXeAL3/5ZebPn87f//5bvvvdBWzdujWp99Te57Rr1y5+8IMf8tRTP+Hqq7/N97//BCNHnsy99/4Rl+vbzJ//JZT6AnfcsQiv93quv34QZ5zxMpde+ivOPns6Z59dyxe+MJtTTvkLX/vaOfTpE+G008awbdsHvPrqo8ybdw+zZv2RcLiUG274hNra7Vx66Q/p1y+XH/94Dd///hMUFxd3edtbtmwVlZV9cDj+xhVXvMigQX/G6RzHFVc4GDv2LsaPn87gwVP57ncvYfHiebG2t3btWtaseYVp0+4lI8PLDTdswDSdfOUr9/OHP/yFbdu2xcrw0UcfceDAgW55n3bs2EFVVRV79+6ltLSU0tJS9u7dS1VVFTt27KCysvK436d9+/bxta99jcxMN9/6lr6n6Dtw6603cfDgwS69p87oI1p7Ti2hI7TvDmmdi8iKjpzXFpRSR4EfiObRNt7/MPCAiLTIiVVK/R+QLSITm+2fjObgXiwi/2zp/FShfXcHSkpKGDhwYELHHhuZHqG0tAyREEpdhtu9DsNwNFGI6Nu3r0Uj/iV6XHGEO++8MWVozhCfbh8O38vo0RUUFe1DkxbKufbaq5g+/VauvHImhvEe1dXV1NTUE4nkoCfinwM8mObpmOaeGJ29gUr9S/z+TGpqDmG330q/ft/jjDN28PHHK7qc+t4a5V2pS9i48V38fv8xwcuBQID//Oc/TJ36ABkZa4+5biQyiX/84wVefPHXKRVvFg/tafstoa167E0U73joEtp3d2zohfqOLtn9ml6wZNcdOHToULuOb75UY5o7RakviWk+0OrSTao6d30+nzidw2LJ0povufh8viblbrpEExGHo9Kig28ScIlpLpH8/Pq4Szbxfuuiiw51y/JOewkMjZf3PJ4LxDCcYpoPxOj7jets/vwlPWI5r71tvyX0huXLjoIuon13BzYDp8XZPxadj6mtc4dZ1PHm5x4Fdh57ShoAfr+/Xcc3JwHk5HyZiRNDZGf/T6v01racu+1NLHi8iDrlTzvtQo4c6UN5+VVUVi6lvn47kUggRjrw+/1Nyt2UfFKKw2GiVDlKLcc07yEnZyHh8F6UyqY5nd3v92Oz5WOzNUTp5+f7u4X6nkgCwsZo7LjPyHifrKy1BIMbqapaEjsvEpnNLbdcx0svvRaXOp5qyfra2/ZbQlsU765u2ymBeFZKms4WLmvrmFbOvbyj57bjN+agaUrDG+0bimbP3dfGuWejZ0K3NtpnA7YCf2jrt0/kGVJ1dXWHzms+4+noDKg1ymxnIjqqdbsPiGH4LCXmyQLDxTBGi2k+IB7P6FZTTmjSwgViGC6x2+eLaS6zVNcnilIFYpqDpKKiInZePAf4mWdWd5sDPNGRffNye70hcTprxTR3iGG4xOMZHyPgbNu2rd3U8e5CR9t+S2j+DnRX2+5K0NH0E1bH/nd00GhGAsdnAl8H3gWOtnX88W7oCMSd6Ky2X0VTuTcAu9D+oehxp1iG67vNzv8VmtgwDbgMrfhQC5zT1m+fyAZp69at3fr73bHc0byDzcwss/LVFIvOXbNDlPqSTJo0uc3rFBUVyaxZC6Rv37ECX7dirEKi1Fax269pk512xx3rum15J1FWZ2Fhobhc48XrDVt1VSLgEygRm220/O///m8LS5qpzTrr7LZ/IizlHY9BOh3t4I+g01m+gg5G/TIwCbgQuAaYB7yKTgIfBv4MjG3r+snYgJOB19GyQdXoFItDmx0z1JoNLW+23w48gaaP16Ildi9J5HdTzSB1pb+lO0dr3dV5NfafNFDX663A1gmi1FoxzZ1tliHaobvdoywK+AiBhaJUsWRnV4nHU3LMNZobgZNPPrPbR80ttbcG2acCMQy3RXkvs+pJLAPulQkTLm1yrRkz5ojTeW3Kd8SdWec9yTAfDzpskKSh454IvGR1+vHijSJABTpB3/mJXrcnb6likLpjiv/JJ5902rVbQrQDLCws7JblncadhcdTL0rtFqWKBIpEqTHi8VQlVIboCNjl2i+GUSpKlYhSU8XhWJGwwsF//vOfTrnHZKDxCN9uX2Atae5rpFoxVeB+MQyXFBcXN2m7DscQsdvzxek8O6XizRqjM9t+R1QveiJaMkgJcylF5H3gfaVUBlpwayzgtmYdh4BNwMciEkn0mmkkBy2lQoBVnUYJPuuss477GonmN2quJB3NH+RwHCQjIz92nKbMdl5+oCgx4bnn7qWmZigi/4OmJ3+GzXYGhmFvswylpaWsXv0LlPqH5bwvs3IfPU0weAnZ2feh1Z3jXyNK8kjVNARRXTul3iIQWE0w+CpQh14Nz0XrH9+IUouA37NgwRL+8pcaDONdlMolEnmQ2tqXgRA5OXD06FF27drF4MGDU4YGfTxtv60235g0ciwdPPVyXyUd8axUeus5M6TumuKvW7euw+e2d0YXb03dbh8ndvs1sX1u9wHJzb1O5s9f0uFyJVr2SZMmi1KTpUHJe4el5P1Ai0tMLaWNz86uEsMoF8MIiWFMFKdzbULLVMdT/52J6Ajf4VhpKVXMEXAKfCjwgcBuUeqoKLVflHKJ2z1SPJ4Syc6uaqRusU+UKhHT3CFKTRbTHJ5Sjv2O1H1Lbb6iouKYZc+0D6mVDVhOM39Meksdg9QTp/jteeFaMrhu934xzUHi8YwWh+MMS2ZneKcv80TL43YfELe7XhyOSsuXtEkMwyXz5y+J+9sN7LwiUapA4D1Ram/MKKWiLFJH4Pf7xeMpsO7xgZg0kv4stnxJWkbJ6x0hXu9E6/6jYrMHBSKWoS+LyUu53UU9ulNu3ubd7v1it48Th2PIMYOy7pAC62ocj0GKADc2+v9aILet806ELRUMUk+bIbW3vG0Z3Lvu+o7k5l4dCxrt7NFkvPLk54fF46kXj+eCFv0+2ojtt2YOQwROFdCdtsu1V5zO62XmzLktPq/mBIJUnSGJiMyYMccyLlEDc1RgucVEPF+0ivkM6dv3CjHNwaJUoSi1XRoU0ustg9SgkO52F6WMY7+9dR+vzTscK0WpKaJUodV+jm23Pp+v1+WSiqIlg5RIYOwRoHHg6KvAl5K2ZpjGceF41L6PBx1N49ze/E1erxeRMo4e/ZBIpCFAMBz2IVLO73//VzIz18SCRjs7mDJeYKhW4i5HqYq4a/zRe66p+Rk1NZtR6j8otRadR/IjAoEJ3H336Tz99KPHPK+W1LGT4cPrLKxatRy7vRLoB7jQ+aCWoAmsPwSGodRcjh59nEgkBMxH54Q6DBxA+5kMwEBEB9wahrdbc2A1RnvaflQySSQ31uYjkQDB4CvAsyjlJRKJNGm3lZWVPPjgQ5x55sV885uLOfPMi3ucInpHkYhB2gTcqZQabP3f2WKpabQT3ZHUKyrE2F60J9I/FArxyCNPEAgEOXz4NkpLx1FV9RChUDGRyGyuvfYqlHK2Kznh8aKlAUA4PItrr40/Tosa1ZqaX6AT8TmAUpQ6CXiC7OwcFi+eF1evraUUBWvWvJD0e0sW+vfvz7e/PQ2l9qGjKUAvtIQAJzoyYxBKeTHNwWRlbUCpL6FDHm9Dj4EFnStzDnb7jTGtw3hqEF2NRNp+44HE1KkPUFa2g8rKIkCIRPQARadTiaCU7lKj7XbRouUtpqXo9Yg3bWq8AZeiaTJh4FPr82X0LMnb1vm9eUuFJbvG6Mo4pNra2g6fm6gPqeG4kpifRakrxDQHyowZc6S4uLhbliubr/E7HEMsf9YFcZ3v9fX1cs45FwoMF1hoLdVdIFAghrGozaW+ePc3YsS53b501RpaIn9oX9ISa4lurXg8Oi2703mt5OX9W0xziVU/BQJege+Iw3FYPJ6SlPEhJdL2m7dxu32uwOWSlfWWeDwHrfizLVZAtC8Wf+bxjBaPp0Dc7gPi8dQfk5gxlZ95e8DxxCGh8zA/ik56F6FpHNIB4I/AQ2iFhqGJXLM3bKlmkLoS27dv7/C5iTht43XG+flhsdu3i1JR2ZnE8/B0BhIN5ly8eKXk5V0rkG+xyEqsmJxigeskM9MVt6OJ+qu8Xr+43UWxvFEDB4rccsvslCSsNEZ9fb3Mn79E7PbBloHJF/i8wCiBcwScMmHCpRIMBmPtweE4Q8AjffveJaa5WJQaJUqdKg7HkJRx7LfV9ptmPK4X01wmMNBiG46wPvsLfFmUKmmi0HHnnd8Wu/10MYyDYhilMWM1cGAkZUlKHcFxGaQmJ2hjdJ9lfL4H/MkySo2NVFl7r9sTtxPZIFVWVh73NVqb0cUjDzRQpCfEnNxO5xSZNGlytzCSEiFoRI9xuXaKTs631VIsiFjO/q0CzriO64qKCjHNQaJUgRjGRDGM0eJwrBS3e7+MG/f5HjNarqiokOnTv2N1wpcKfMcyUOeLUvkyadJkqa+vj6tq7vX6xelcKx7PqJS537bafuO2q0ks46yByEGBWotl+HXJzJwshjHG0jAcJTabU7Ky8i3SR6EoVWWFA5QnpADSk9CSQepIkpGVwD9F5EPgd9GdSqmBwDnooNmzO3DdNHoQKioq6Nev33FdIxrkGQ/NAwRFItTUBNE5lCoxDC+G4QCepaio5Tw8nYnWCBqRSGMfVh4iYWAIMBgoR7tiw8BADMPJli1b8Hg8Ta7z6KPPIHIuenGiAO2HupdI5BpuueWOlAkUbQv9+/enX78BKGVH5BxgL/APwINICe+99y1mzJjD7Nn3kJHhRkQ7/g3DgWE46NNnPJGIE5/PlxIBwW21/WjbDYV2UVPzkrX3WcCD9pPlAz+kvv4LmOafcTiEQOAFgsH/EA4/jlZBW4nISnR7qSUYnMHMmdf1mGfeUbQ7/YSILLeMUfP9JSLyJxFZKSLfSE7x0khVZGVlder1m5MHIpEIIoeAeTEnN9BiuoeuQCIEjegxWuDkMBBAM8/6AwZK+YHDjB07tsk1oooHOTmrcTi0EdNsvu9iGIf42teu7vT7SxYCgQA///kriAwG3gCeRIu81APPA5+xZs1fGT/+SkpLt1NWdgOHDp1LVdVDiIRShswQRVttP9p2Q6FZaIKyC22MIuguV4i2gZqaA9TUOAgGf43I4yjlRanFaAnRryJyLkpdit1exF133dKp95UK6A35kNLopWjMHoSLUOoS7Pah5OQ0sAe7s7NKhHIfPQYexGb7MjALzTzzo2Uh7+KCC8YdMztqmH3lk5OTg8fjwuXKxesdS3b2SVRVVXXpvR4PfD4fGRluoBhtiAeiu57/Qqcs+wfwL4LB/wMuR+QyRP5OTc1mqqqWdHoIQ2dgxYpF3HnnOGA/WpO6xPomA33v24DPgDsIBBYANjIz84lEwmjPyIPAOpTKZsCA58jJ6cPgwYOP/aFehrRBSqNDqK2t7fTfsNlsPPzwUoqK1vH++68wb949mOYeIpFyoGvirdpCIpT76DG5uX/CZnsfOAOYgFITmTgxxFtvvXHMdZvPvpQyyMiwEYkcAo5gms1zSqYu9L1Eqdz70J1zAPgl8BTgRiSCYRSg1LMo9Vs0sXcptbVruO22gk4NYWgvEmn7NpuNxx57iPvum0FWVg5KzUEnt65GS3+uBG5Hez32o1Qp9fVl6Fyh1dZV/Ghdw2d7nEHuMOI5ltJbmtTQFpJBamgvEmXndUfK89Z+t3E6BqfzTMnNHSJTp94ixcXFrV6zNXp8d9T/8UCrN4yxSA2TBd4UmGCpMpQJHBTDEGubKC7XjlbVL7oT7an7+vp6WbhwmZjmIIusMMIidKwQpeqsrVBggCh1naX8XmVR5a8QGNCiHFVPBsli2aW31DZIXdUhHw/t+3gR7x5TOcumFlWdIqb5gCWsOqEJu6wltGaAu7P+O4KKigqx2wcJzLAo0C6L/rxR4IDAAYv+fFAMY4x4vf6Ujb3pSN37/X6ZOvVmgWECn4hS/kYMugpRqkDs9rkx1p1hjBa7fa643eennEFOBtIGqZcbpK7ukI8nMLY1dNSgpqpCcpT2bZoPiFJTrQ5XRKliUWpyQurk8eqks+q/M3H22RcKXGnFXx2xgoMvt2YDB6xA0SnicKxMmecXDx2p+/r6epk3b7FAnqXnp3UMHY7D4nYfEMNwWaEMPsnLe1s8Hl/KGuRkIG2QerlB6uoOeePGjUm9XkVFhcyYMUc8noJ2G9RUzrJZVFQkHs94MYzRMWMU3ZTaJC5XQdzytWWYk13/nQ2/3y95eSOsGZHPUqy4VmC+FSh7noBLMjNdluJF6ipcd6Tuo++nae4UpcqtAUlDypKJEy8Xu31cLOZMz5jGycKFy5J/AymAlgxSmtTQCxClCBvG07GYmM4WGT3jjDOScp2o5tfgwafzk5/8hUOHwO//EpHIWwnrd+3evZtwuD+G4W6yvyvFOAOBALt27Tqmrr1eL+HwIWAASjVmAoZRyo1hOJuUryUx1ebCmsmq/66Cz+fDZnOjlBvIRDvzf4iOsfqL9fefGDAgl7fe+ilFRet4+OGl2Gw2AoEAH374IX/+858pLS3txrvQaG/dN34/+/cfjsORiVI2GpM2LrpoIjpO7bfA763PIZxo0qFpg9QL0F4F7WRg/fr1SbnOsmWreO65TdTU/BmlCoF/UlOzmZqan7VpUKOd92WXfYPDh3fj822huroazebqGkp4WwbE4XBw++03IfIZIgess8JAJVlZ1ccohLckptrcMCer/rsKXq8XpY6QlVUNFKGzx3rRsTlZKHUqhjEMkVxM08ThcBAKhXjgge8yYMApTJjwJa66ajZe76lMmjS5S1ieLaG9dd/4/RQRTNOO2+3E7R6NyzWSW2+dyosvvkpOzk/xesfG6P05OT/l5z//VacMKFMVaYPUC9AeBe1koaPpJxqjId31E9bsIcP6fJpg8JcolU1rBjXaecM/sdvvBVYSCBRTXe3vMkq4NqgbCIV+AfxfXAOyatUyJk48A7gNkc1AOVlZR7DbH2xSvvbMdJNR/10JbZhvQGQe2iCXo+OSKoBMlHIg4sMwKmPtddmyVTzxxC8IhcYDhejYnQ28/34ml132le65Edpf91rt/TCVlUWUlpZRVnaEQ4fKqa7eSjhcSk1NDVGDFaX368/USLfRlUgbpF6AaPBlOPztWN6gzu6QkzFCj44cbbaB6FlNGMAySrmEQpuJZ1ADgQCbNm3i+edfjnXeOTmLMM0zgK9SU3Mu8PlOT8FRWVnJU0/9hMOHN3LkyBwOHTqXQGA1Sv2ANWt+SWlpKbt27aKuro53332T++6bgNP5dVyur5KT82Xuvrtp+doz0+1pMyQNQali4BZ0Koo70EHCmYjsICtrMdOm3YTD4SAQCPDTn75IKORHqzkMQi9fDQZW8/77H3fb8l17697hcDBy5MkEg/ciEkIkl0jkcYLByVRV9eGaa26huvozQqHiJuelmkJFV6AjWnZppBhCoRCRSITa2rUEgzcDFWRlZTJr1l2d1iEnY4QendlFIocwTZOamkqgPyJl6BH0o00MaigUYtmyVaxZ8wqhkMmRI4JpmuTkCErZ6NdvKdnZ8wiFLuKtt37B6aefftxlbA2LF68gGDwDeBHwIuKjpmY2sAbIZOzYC7DZ8oHD3HnnTaxatYzlyxfi8/niau411++LIhz2oVTTjqmnzZC0fNCvyMl5l379HFRVbScYfBn4GiDY7XXMmjUt1l59Ph/19X3REjuDGl1JoZUe8uLq/3UF2lv3gUCAnTs/w27/OrW1lxGJHAVGAP8iHO6HSBiRu/H7ryEn589kZHhjA8rp00+QgFgL6RlSL8CyZat4/vmtOBzr8Hg+JS/vY+z2z2EYGXGTviUDGzZsOO5rNJbeMc0AppmJyFbgVux2P3fffVYTg9rYv2Kz/RMRYkt0UYj4sdmCDBs27LjLF0U8wkIgEOA3v/kT8LiVaI3YcmMg8DKBgA/D+NsxfqCooGy8TqY92X+TUf9dicazP8PIZsCAc8jPfxy3ex1OZw5r1/6ZVauWxdqr1+slM7MOKEMnE4hC0EoPx+r/dRUSqfvoLH7Tpk1s3ryZSGQA/fo9gsv1LkoZKPUihjESUCjlJidnNYZxCLi4y5JspiTiUe/SW8+hfXcX5TlZdNzmwZ8ez2iZOXOuVFRUNDku3n06HCtFqSmiVKHk54eTTnVvLbYrmmJAJw4st4IcI6JUpcAw6dv3jg49j0TUKKLH9SR0pJ0uXrxSbLZTBL5kxS5FBPYJfEkmTZrcDXeh0VYwc1SZwTDcViK+PIFcgY/FNDdYga9itRmf5OeHJT8/LC7XeFm7dm23KI10NUjHIfVOgxQvb1BDLpnOS+i1devWpF6vrbibePeZn18vDsdKMQyPuFzjkx670lpsl9/vF49ntBVXUmJ1lA9Y0jAjRKkRYppLJD+/vkPPo636SHb9dxYa30d7Y+Xq6+tlwYKlYrM5rU5dd+42m1MWLFjabUa5tbpfvHilFU80xQr2jea8ulLgbIH1VtLBYjGMcsnOrhKHo9LKf+QWj6cgZeOvkomWDFJ6ya6HIrqMlJ2dTVcz7ACGDBnSKddtCfGYhErZcDim43IN4O231zSJXTletMV4A2KOak1d/hmwC/gD8E9Efk9NzVrKy6+iIykUWlvag66v//YiHh0+EgkzbdqpMSFa+DzXXz+IBQtmxb2GzWbjv/5rJXPmzKB//3H0778Cj2creXmb+dnPticUo9YZaKnuA4EAzz//ErW1fuAZdMoJG1AArEATOKYgUg3cRlbWEerq6ggEPgPmI5KJ3/8NnnuusNvurbuRNkg9DM1f9DPPvJgRI04mHL63Vb9DS4GbHUVZWVlSrpNoIGhr/pVp027m9NNPT6rzty3G2+7duy1H9ZnAF9CBnd8FnGhH/Bjg59TXb6SiYm7SGY/Jqv/OQrx4quef/xTDMNi27QO+8Y0JQITXX/+A0aMnxH3moNvtSy+9Rp8+q+nT5wKUcnR60HdbaKnufT4f4XA2SrkaBUGHgUeAm4F+KKXo0yeD667LBz5Pff3ngOuAC4EPCQb3EAwO77Z763bEmzalt9Rdsou37OF0Tm0xjXdnadwdOnSo0+6npWWcRP0ryUBbPo/CwsLYEqLTWWhJ3xy00pOHBCqt/0cJ9JcJEy6VYDCYtPIlq/47A23V3fz5S+K04Wtlxow5xyxRbtu2TUxzuCVK25DGPT+/vlOXpFtDS3Wvl3ELRKkCaxk3JLBE4DqBvZYfbL6AR0zzdGsZ8lsCFY3kpLS4rMczvleKqkZB2ofU8w1SWy+6z+c7xu/QWRp3Bw4cON7b6TAhw+/3S2FhoRQWFnaq87ctH1K07B5PlcBwgU2W471SoNzqgMYIfCi5udclVVcwGfXfWWjNr+nxXCBO57BYnebn14tpLhEYKkqNEI9nVJNBxvz5S0SpyZbPRXfYUQ247tIpbK3uoz4krdM3U2CAwIcCJZZ+3xSB/WIYB0WpTdb/y8Qwwo10DieI0zm8VxMbWjJI6SW7HoS2lpGap/HuTI27SCTS4XOj6IjkUSgU4pFHnuDyy6/j8sunt7jElwy0lnyv8RJiJFKFjqeZi84QWmtt84CpGMbJ2GzPJHUZJhn131loTTkkEiknI8NtyeiEKC+/ipqa59FxXAbV1V+J+VCiy3V2+49RKgut/+dF5HvU1Kxh6tSvdEuMTmt1v2LFIu6998so9RbwGtqPdAvwLPAb4GkMYxBgIOIEngD+m0hkDyLViBxA5DNuv/3Eij+KIm2QehDaKxHUmRp3ychY2hHJo0S13pKBxhlr33vv5WNIE1GDZRiXodQbwEfAecBFwGXAqcAM7Ha7pUaRPBmYVM4Y25q/77bbpqJUJeGwj6qqFdTXA6wH3gfeobZ2X8yHsnv3biCP/v2HWzFqPiKRRcBVQC6vvPLbThuMtIbW6t5msxEKhRE5D31f/wT+DmxHk188QASRCLr7NdG6fvWI7EfkViZOPINVq5Z19m2kJNIGqQehPYGT0Lkad4cPH+7wuVG09366Q9U8Ws54jLeowdq1az333PNl8vIuJivrenSK6l8Ad5OZaaNfv5yksx6TUf+diZZml6tWLYvJXAWDvwSeRCsvCErlA09TW/t7RPpZVzpMOFxKTk4Opvk8Su1GqXcwjH9hGP/otMFIa2it7gOBAD/+8Qvo+xoC2IEsdKr2KqAIkUpAMAwnOrV7EUp9C6W+hmlu4c03X+u0gPaUR7x1vPSWmj4kkfY79jvLh1RTU3Nc50fRnvtpT8xVV6cyb3wfpjlMlJosprlDBg6MdEpuqmTVf2ejpey+M2bMEcMosHwrR0WpsBhG5BgfSrT9ut1FVk6phvid7sp51VrdFxYWilIjBYoEPrHyP5VYOaBGCkySvn0/FcMobeQPWyJud5F4vf5uI2p0NUiTGnqHQYoi0Q63s5hpmzdvPq7zmyOR+0mEBNHZmXPbKqff75ePP/5Ypk37tng8o2J1Pn/+Etm2bVvSOs5k139XQzPSRklW1idWsGhlo0y6+bFMutHn6XRGmXY+yxhFuiQAPB5aq/uPP/7YIjLkC7itzLBDBOYJeMQwcsXtHiWGUSBKjYoxBlMloWRXIW2QeplBShTRDjQeA+94EA6Hk3Kd9qKtGd/8+UskN/c6cbsPJHVGmIiha36MxzNK7rlntsybt7hdBjIR49xd9Z8s1NfXy6RJk0WpfIHxVsd9r8BlMmnS5GPqx+fzics1MvZcuzMrcGt1P3/+EoHRFtU7Sv3eKjBZwCnz5i0Wv98vM2bMEafz2i7L8JxqSBukE8wgdfZMYf369Um5TnvR0owvGAzK/PlLxDCcotSmJiPpZHRaiSx9xjvGbr9G7PZx7YyzavuZdVf9Jwt61qNTehuGT5TaJEpNlgkTLu3y5ef2oqW6j8Yh6aW54kYxaUcFNorN5olpNHZlTF0qotcaJDQxYxGwB8213QBcm+C5L6Dlg5tvTyVyfiobpFR5eTsLzWcRixevlNzcq8UwJjQSrmzwNRzPsk4iS4XNj8nPD4vbfVSUKhSlRonX629zVN/bn1kU8erK46kXt/tAqwOHVO/Ei4qKxOkcJ4YxUZQKNzJIIVHKJy7X+ce0wa72daYKWjJIvYFl9xCwHK3d8iXgA+A1pdRVCZ5/CJjYbHsy+cXsOnQFG627E8Q1Zr5F79dmewaoQMSHHqf0p6YmSChUwvEw3BKhzzcc46G6utrKDFqBiBvIIxI5GPe8KNr7zLq7/o8HzeszmiW1LWp8WzT8rkJLde/1esnI8KPzeR3CMAxrAyjFMKpibTAq5QW0qll4oqFHGySllAeYD3xfRB4XkbdF5G7gbeD7CV7mqIh80Gz7rNMK3QXozPijKFIpQVxD5tnh2O03IjKLSKSESAQikVKqq+/i9tu/2eGXPhH6fPSYysoiAoGjQB5KOYFDiJRRU+OIe17ze0j0maVS/bcXxxuO0JbwbGcjWvfN9SEdDgfTpt1CVlY2cC8ipeiYo4ZsuH379uXBBx9i+PBzmDDhBoYPP6dbYqlSFT3aIAFXAH2Al5vtfxk4QymVvCxtPQidGX8UxUcffXTc10gWmt7vvehsnF8AzgUuQasnSIevn0i8VN++fRk6dDA1NTMQOUgkcphIZDewGMimpqYMkUiLcVbtfWapVP/tRXvjz1IN69ev5/77lzJ06NlMnHhTE7WQFSsWMXv2V7Db/w2cAZyKaU5m9uxzWbFiEUuXPsyTT/6HQ4de5/DhP3Lo0Os8+eR/WLr04e6+rdRAvHW8nrKhZ0G1gGq2fzy6B7q6jfNfAI6i01KG0OHUDwAZifz+iexDSjWWl3aSXy/wscByy7E8RmCwmOYD4vGM7tA6fXSNv6KiIua/8HjGi9M5XObPXxLzXyxevFIGDPiGxRQbIzBBIF8yMy8X01yWUM6m9jyzVKv/9qIlf1BFRUWnsEKThfr6ernwwi9a+nqaPGOaO8XpnBp7rosXrxSPp0Dy8s4Up3NorJ34/X5xOIaIUlstH6f2dSq1VRyOISl3r50JeqkPKQ+osG6wMQ43+r41fALcB1wPfAV4F1gFPNfSCUqp6UqpdUqpdSUlJZSVlVFSUkJxcTFHjhyhqKiIYDDIli1biEQisZFsdN35o48+IhKJsGXLFoLBIEVFRRw5coTi4mKi19uzZw9+v59PP/2UUCgUS5kcvUb0s7CwkLq6Onbs2EFVVRV79+6ltLSU0tJS7rrrFmbPPpcrrvgupnkZ11//ONOnn8bXvnZlk2ts2LCBUCjEp59+it/vZ8+ePQnd06efftrl97R3716qqqrYsWMHdXV1FBYWxs5dsWIRDz10GXApd9+dSVbW60yd+msGDfoXn/tcBkOGnMSOHTsSfk7r16/nwQcf4r77HuTqq2dwzz1zsdv7MmfONM44I58xY85lz57PeOSRH7BhwwZefvk1brttPoaxhLlzf45Sv2TOnF8RDu/n9tsvZ+jQwfz2t4+zYcM73H33rRw+fPiYe1q8eB7f+97lKHUJt932CEpdwve/fyUrViw65jmtXbs2Zdtea88pEAjw7rvvUldXx/XXf4Vt2z7gd7/7AR9//Hfc7jyuumoqt976ANdeeytf+9qdTJt2LytWfJ9NmzalxD398IfPMWbMaG6/fSlgZ/bsXdTW5nL77fewZs0vef75n/Pii9v48pf/myFD/s0ll/yef/+7gief/BGFhYUMHjyKq6+24XQe5aabtmAYinvvDRAM2vnggw9S5jklo49o7Tm1iHhWqrs24HLis96ab+9Yx/8UKIlznQLruFs6UIYnrXML2jo2lWdIUXQWiycVlQJ8Pp8o5RTY20Q9WUf3u8Tn8yV8rfgU7nFit19zzAxmxow5MQWJ7OwqMYzyRiPgCZKbe3W7ZqaJPLNUrP/W0BalfeHC5WK3XyNQaKkaFApcI3b7/JRhGvr9fsnLGyou1zgr1mii9blclCoWt/t8cblGtsjGXLt2rRiG20oxIdI05YRHCgsLu/sWuwz0kBnSe2hFyra2b1nHHwZylVKq2XVyG33fXvy39XleB87tUrSVdC8QCODz+fB6vUlflz9w4EBSr5cM+P1+THMQhuFAC1mGgBBKZWG3D8Tv9yd0nXiMN6Wyqa31U1v7CIbhBhpYcL/5zZ8IhUoJhUrIycnGNDOBckQ2A0Xceec4VqxYlPB9JOK0T8X6bw2tieIGAgGeffZ5gsFHgdGAG/2aP0ow+CuUeiQlEtb5fD5qaxUTJlyKFkx9D72oshWR7xMKHcIwXE2IKZFIAJEAIv0wTZOsrEw04eEgIGhG6L1kZdkYNuyEdHk3QUoZJBGpEZFPE9j2WqdsBvqivdiNMdb63NKBYkSNW8e94J2MtrKsNv9++PBxzJw5l8rKyqSVIS+vrdXQroc2vHUYho9IpMwiFpRhGD4cjqMJkzniMd4iEV8sE2hD+gGhpsakvBwCgRBlZbdSWbmLnJxsnM4wAwYsZ968e3jssYeSTk1OxfpvCW1R2jdv3kwwaMcwCtBdkrI+CwA7kUgNyVRK7yiys7Opra1i+/ZvoQVTw4AXnULiVb75za+h1BHCYR8iIaqqHuLQoXMpL7+RsrJd/Pzn/82ZZ45BpBCRi4hEJiJyEX377mTWrLtSnszRFUgpg9QB/C+alHBTs/03A5tEZHcHrnkj2hj95zjL1mloKwXDsmWreO65DdTX/4zq6ss4dAh+8pO/MHjw6UmjmNbU1Bz3NZINh8PByJGnEA7fh1IRDMONUhHC4fsYOfLkhF/4eIw3w/AiUoaID0MHllBd7ScQKEZE0a/fBuz2cwgGP0dFxZko9QXuvHMMN910LZs2bUr66D4V678ltEVpLy8vR8ePHbK+iY4FDwGV+P17SaZSekfh9/ux2wfh9fZFKRtQbpXRIDNzAHPmzIixB6uqllBTsxmRvwNvkpX1AT/+cSGffHIY0/wqShkoVQtUcs45Lh56aEm33lvKIN46Xk/aaGDazUNzfH+MXq+5ptlxbwE7G/1/CvAPYCbwReAa4GfWuT9O5Le7w4fUlmpAcXGxmOYgUapA4AxL5PEBUapWlCoUp/P6pKzHp2LG0qhgp2k+IIYxxkp5PaZDLLu2fEj5+WFLhWFKTCDT4VgpMELgFMnK8kpmpkcMo0AMwy2mOUgWLlyWNFWBVKz/lpBIpmPdZqcIHBCoF9hv6cENFJgskyZN7u7bsNrXaPnc5z4Sw/DFFLtNc4e4XAXi8/mkvr7ekrByNZGwamgvoyxVb7+43UWWyveJIajaGPQQH1JH8CDwPWA28BfgQuB6EflDs+MygMbrJtVoH9MDwBvAq8DZwCzg251b5I6jrdHmggXfJRg8A722/Td0krA9iDyKUl6UeiIp6/GZmZnHdX5nwOfzoZST/v2/j9u9DqfzZdzudfTv/32UymvXkk+8fD6zZ3+F2bPPRalLCIUmotRlmOYZ5OQsorp6FTU1m1Hq38AN1NaeT339O4hsQaSQYPBCnn76jaTl7knF+m8JbcUdeTweZs26i759d6Bdt2OBcegxZB12+9ns3Lm3231IANdddxXh8BqczjBOZy52ezXB4EwCgaOMHn0us2bdz5VXXoLTOQK3ezQej4ucnBwikYj1/jmJRHwYhgObbTg223BSYTkyZRDPSqW3xLZUmyF5PKPE7S6wRmJ1AqUCInBQYIwotUvy88NJkevfvXt3cm4oiUhEc64j12zOePP7/VJYWCgeT4F1bb+Vq+egNcI/RWBtTMfMMCJW7ptR4vGMSspoOBXrvzW0pUMXDAYlP3+kwBcE3rTyCW2OzUC7M09QY4agx3OBfPnLU8ThGCIOxxmiVL4oNUogz1IszxOlXAJ5Ypo7xO2ul/z88DEzpO5UK08F0ItnSD0ObbHjWkNro81rr70Kw3DhcJwC+NGrj2F02uT+2O3VRCKHSMZ6vMvlOq7zE0V76ipZCgCNfzMe483hcHD66aczbdotRCKzCYU2I5KLyE/Q6cv7ot2Yj6CZfsRGx+GwIymj4a6q/2ShuQ7dxo3vcuedN1FXVwfA0qUP4/P5gReBycDJQD4iq6ipeRmR8lbb7PG8U22hsc82I+N99ux5lL59xxMOH0SpkxEZAWwEPgUKETkf6EtNzQwOHfqU0tIyqqp2k5W1mKwsByKa7dmT1Cm6DPGsVHrrnBlSslJCtBblrkdxJZKdXSVKlQiUCewTpUaL212UtJiOrVu3Hvc1WkNH6+p4FKErKipkxow54vEUJPSbDVH5owRyBa610g74BPYJTBVY3ikzpM6u/85CvOc6f/4ScTqHimFMsFSywwIRa4bpE6VOlRkz5iR8vWQnZIzOuqOq5HfeuUXs9u2iE/HlWc86ZJVZLP9XnsAtAgWi1ARRKl8mTrxcFi5clrJq5V0Jemv6ie7c2muQki3nE285qfFv5OeHxW7fbqXTHp7UF6CzX6LjravGddNWoGm0U9OyLqeKUgXicKwUt3t/Qr/p8/nEbh8ksNWSgqmKDQS0jFCRKDVF7PZxSQvw7KmdWLznmpt7ndjtQ61lz5JmqRsKxW4fHMsjJNKwZFpYWCjz5y/pVImsoqIi8XonWgHPmshgt++3nu9ogVGWIWpuSAsEThUYKn37zhCXa3uTVCWpKIvUlUgbpG42SJ3h34iHeDOEZKfPFhH55JNPknat5khWXSU6eo7q4ClVaBmUg6LUVHE4Vib0m7rTukAyM8tEZwmN+pJKrBGyM+ksu86s/85CS8/V7T4ghuESu32uKDXVUi6ICBSLUpNl9uwHREQ/z4ULl4vDMcRKAe4WGCB2+/2xNODJfqeO1Z8Ly913v2cNNoYLOK1ZcdQQha3vXAKbrG2yZGZOFo/ngm7zg6UaWjJIXZtI5ARGa+y4SESzbIYPH37cvxNdq1+8eF6nqTQAnHXWWUm/ZhTJqqvo2r9hvEtGhpdw2Mfq1bOBVTz88FKgIWhTqbdQqg+QgVJeRJ4mGLyE7Ox5RFlQLf2m1+vF799vReqPjO2PRHZitwd45503Oe200+I+h46qaXRm/XcWWnquNttA7PaBZGZ+ilJnUlt7CZFIP+AzMjLgv//7MxwOB5FIhKefXk8w+FdgJDoGaBbB4J8xDAf9+i0Dkv9OiUSA7yLyLEo5ee65fuisN1MwjP8QiUwDnkcHyR4ApqOVvsegQz1foL7+XKqr6fZYqlRHmtTQReiKlBCN0dk5YzozQVwy6irRhHcNuZQGogMyw4AmIUAuodDm2G+25jhv6LTKARsi5Sj1XZQirjFqS22jLfTEBH2tPdfs7HqmTTuXnJzfk5WVAezCbr8Rl2s/8A+ee24DzzzzU4LBR9DGyAYMROflrCUQWE0kEohdL1nvlM/nIzv7ZEzzDJS6BLiIOXNeAgYAd9Gnzy+BIHAW2gCdZf3/exq614HAScddlhMBaYPURejpOWCaozMTxCWjrhJNeBftJCORQ5imHagEwoj4LOPyKLffPpVHHnmiReNxbKel45ZM8wyys0+Oy6prS22jLfTEBH1tPdfHHnuIjRvfxW6vwe1ey4ABT6CUjYwMLyL3UlNjA0y0MVLW5gVcQB9Cod1Jf6e8Xi9KHcHhmI7L9QF9+07kqadeRsfUX0Ft7WPASnTGmzKrfD8EonqKEaAEqCInJ35bSKMBaYPUhYgXbDl9+mksWDCr0yirnYXOHqG3VFeJipQmOstq3EmaZgDTzERkK3Ardrufu+8+C1CtCoNqGZ9yHI7pTQJyHY7pKFVxzEg9GSnme+IMCdp+rn6/H5st3woYhagm3JEj09Az2MvRBiA6k/Sh49urEbmp3e0kEVx77VWEw7Pw+1dRW3uAuXP/G3gH+C2wAZgKbMRmOw+t6zwXOIjuXkuBuZjm11CqKr1k1xbiOZbSW/JJDY1xbNK3zqGs9gYcDyMpUaZecyKIxzNaZs6cKxUVFXEd8V6vX/Ly/i12e754PKPE650oDscQsdvHidu9v022V1FRkXg84y3ZGH8TB393BoB2JVp6rs3r2zSXCYyzWGsTLGmmswWWWuSRKQJni2kOksLCwqQl9mseDGu351tBr1oOKDPzkMW0K27EpJwqNtvlAv0FvALni1KjxTQXiNM5JSVSaKQKSLPsUscgRdHZWV07Exs3buzuIrSJ9sYkxesko7TfgQMlpldnGKMtnUCP2O3zJT+/XjyeErHbrxHTHNTqbzVonTnFMCaIYYyOaeG1hx3WE+q/o4i+F253kcAgy+gcsOjgB6x4rwECboGBkpV1tixYsDSpg7vm76bTuVaUOlVMs0JmzvzYUuU4arHrJopSRbFYM5drhNx2293idA4Tj6f1LMEnKloySEp/l0ZHcN5558m6des6dG4gEGDEiHPR0d8N0/hw2IdSl1BUtC6l/Up1dXX07du3u4uREI4nL1Tj5xQIrKamZjPwJCIGUI9S8zHN0+jXb6m1HPh53nrrNwwbNizubz344EOsXr2ZmpqHqa3NRUTrAtvtQzHNPUyfflqMAdgaelL9txehUIhly1bxk5/8jMOHq4GNKJVPNO1ZJHIQOJN+/XLJylJMm3YzkUiE55/fGlsGjfqSEq3Pxoj3bobDlZSWjgX+l379cqmqykT7rnzAZSi1DqWyEDmDe+65gv/3/57s1HxkPR1KqfUicmzOuXhWKr11/gyp8ci7+dbRZZuuDLjbvn17p/9GqkDHKV0rShVYo+A6S0EgbMXMjBGv1y/5+WFxuca3mPmz6XJUJBZsqZeBXDJ//pKER9EnQv2vXbtWlCpolH03uoXEMArkzTffjAWaNl9W1c9if7tV3kUa3k2v1y9OZ6Hk5a0Vu/07AqcJXCdf//p6a7lwnzV7W2ApfxeKwzGkSRBvGvFBWssutZBMGvjxUog7ghPJObtixSKuv/4klMLKY1OBUmJtmrVXXV2Ez7eF8vI9XHLJV7n//qXH1H9T5p8iJycHj8eF2z0al2skM2bcnnAivxOh/k877TRMM4jIDqJ0fM2A3IHdHuTiiy/G4XA0q1ehurqa0tIyDh/uQ1lZhPvvX9Kud8HpdFJdvQefbxTl5V/n8OGrCAZfQmenOY2PPpqH1ts7H/Ci1Cxyc+vIy3uI2bOn079//+RWxAmEtEHqJiSTBn68FOKOoKKiotOu3REkIq7ZUQFOm83GY499D5dLkZd3FI/HhcNhApWIHEDkMDU1IURWIHI7hw+/wQ9+sJbPf/6qJh1hvEGIUgZQHpeN1xpSrf47Aw6Hg3vvnUZW1gI08/EQIlv/f3tnHh9ldS7+7zNJYJawZSaTAAKyI3QRFRdoFVtxbV0qilfBgrhSZREF1x+iVXtrrVvvvd2sW7VVq71drr3XWhVbpVqgxSiLLAoCISGBhGxAZub5/XHOhEmYQCCTmYGc7+fzfmbm3c55n3fe9znnOc95Hrzeedx009VNz0iiXGtqaqmvbwSCqMZQFV566fODeha+//3H2bPny5j0LSswnnQnA/8N3MygQU8AjwBXYrLWfA2Rr3HddV9IqXdfpyRZt8ktHW+yU21fINA46QpJ1JKysrIOOe/B0pbwQKkKwNl8oDumfv9aFZmgJoncUIW5CitUpFZFNqtIsd5yy137OcehO7Jki/w7mr0BbIdrKHSihsMdE/4pTjzJo0hJgtOCiakHQxTm6LHHfkPhFHvPi7WgYECnuR+pAudll30KKc6Bxn72t70jxqLaQrY8gG15wadKCSR7OV5zzY3as+coG9l5kMLJNujmvSpyogaDg5rdt1Q0QlSzR/7p4kDBchsbG3XGjDnq8YQTMgXfpaHQapuhtW3Pwrp16zQYPF7hA4XqhCCv1Qp9FS7SY49dadetVJigffuOcB50B4lTSFmskFqjLS37TPWQNmzY0CHnPRjacu2plM9ehTRUg8HRWlg4RE888XQ1qSeGW4U0X2GVHezuo+HwiUlfhO11QMkG+aebAz0PpnczVAsK3lW//y4bPfxEhaPV5ys+oLNBY2Ojzpo1X0WCCmPsPV2oJqX6WjUpJZbr6aeX2MC5pWqSCO7bE3bsn9YUkhtDymLaMjYUH4uKRmfS2LgZ1VhaQhL17NmzQ857MLQlPFDLfYx8Ing8hRxs6uj4/YC/0qXLMmprL+SDD3Ix6eL/iolftgJ4CliACW1zcGNDbSUb5J9uDvQ8BAIBrr56Cg0NN1Jfv5JY7EJUq4FCGhqUc8+9pFXnhkgkwmmnncvjjy9D9W3gT+wdQ7oT+A5QAIRZvz6Aubc+jOt3f556qm0RNhz7xymkLKWt4WUikQixWJSGhr9RWTmasrLh1NaewNVXH9OhA6zZEJOrpZNAXNlEIqXEPRX37rO1yfuqomIHZWUrqKnZQE1NTZteJPH7AfcTjVYTiWyloeF5TNTnfpgX0zHA94FfAj5EunHxxec2axSkyiMyG+SfTtr6PMybNxOPZxsmoOl64E1E/o7IMhYvhttvX5j0/LffvpDFi0uApxEZiYmXlwvchYnk/R5QA8Q47rhGzP2OYkID7SAnJ9Tp7klH4BRSlhJv2YvkE4msb4pk3DI46IIFD/Kzn60ApqDaHdVc6ut3884773Zo/fr379+h5z8Q8UmHU6ZcQjQ6i+rqdZSXV7Bt22oqKr7N4MH96Nq1a1MPsqbmWurqNgNBYrE9qE6hvn4P48ZNaZNS2LBhA9u311NRcQ6VlVPYtu3LwB5MT+hk4D5MIM2hmACbJeTkbOfBB+9pdp5UeURmWv7ppmVPNxarIxJZj0g+ic9DZWUlgUAfPJ4/I/I4Hk9v66rfB3iEp59+cZ8GSF1dHU899TwiAxDpYyfg5mOUTiEwAPOqvBKYw1/+0gXTQ9oFzKFr16+7OHUpwimkLCCZO7KZC7GB8vLRVFZOZtu249m58z4ikc0kpkN48snnqa8/mvr61zG3sxfQk/fe+5z58xd0WJ0/+eSTDjv3/mjZw3j22ZfwepfT0PAV4HxEJuLzHcfq1T2bgp9eeun5wD+AC4CvYiIz90NkOQ0NbxCLvXVApXDVVTfR2DgcE1TzG8CpwFsYU93bGNPOg5gcPdXAE3TpkttsXlEqgqrGyZT8M0W8pxuJbGbnzvvYtu14KisnU14+mpqaDQSDwab9otFtQE9EijGKAyCKSCEeT3CfnkxZWRk5OYVAFapb7VrBPE8VwA6Muc4D/I2JEx/GpJo4CfiIvLyVh2XE/qwk2cCSW9Lj1LC/Qdo77rhXfb5vNmWqNG6szdNgx4N07o33tVVB7efF6vP1PqLSJNfW1uqMGXM0GLy0yUmhsHCLikxQr/dGLSh4S8PhMrt+k/r9fTQcHqah0Inq8RSq33+XBoP/VI9nmI2woOrxlGs4vG8cucQ02evXr1ePJ6iwxjosDFRYp1BlA2xG7AD3MIULFHpqbu6t+2QIzZRH5JGCeSZGq8gl9v4ZTzef7xvNPCZvueUuFSlWkc0JkR0q1e9fm9SRpaqqSgOBoxRutM/RZhs373OFMxTCNmDqRBtMtVrhPYULFXrozJnznJfdQYLzsss+hdSaO/Itt9xlPcNKm8LLJAtNUltbqwUFA2yQybgyUjt3YrOKhFsNY9NelixZ0iHnTUaid5vHU6giJZqfv1N7945pYWGDwk0KzYOV+v0LVOQsDYU2aXFxVEVKrEKfbd2C4y+qMi0ujjYphdWrV+ttty1Qv7+PejyF6vEMVa+3t0KxwgI10aaHWQ+se+xLa6tCuZ2XMlxzcuZqMLhv2JpUevylU/7ZQlxxmDlC6xX+ribKdvPnorGxUceOnaAiE5qic/v9a7RXr4lJveHiis4EbZ2vJnr3GIUiHTNmvL788suam1uosEIhorNn/8M2QlZoXl74iGr0pYvWFJIz2WWI/ZlvnnrqBVR7kZNT3BReJhTqRVHRSPLz+1FZWQkYr6JvfesbQHeMvRtMzhhFJIxIjw6rfzoTxMXHXaLRXwJDEDmG+vpGampqqar6Lib3zNvEYr8jFvsf6us/or7+p8APyM01YwiBwADgXhoa/ohqBbHY56hW4/f7EPE0hWz62c+e47HHfk9DwzhUS4CV7Nr1JtADWIox0f0vxpOuBHgCI3NzfG7u+USjk9m+fTq1tTU88MAPm8amUhmd43BM0NdezPjQUeTm/ho4C5N36FxUX6GuLp/bb78HMJE1Fi16jblzTyIYvAiv9wx27TqF3buX8eyzLzUbL4w/h/n5fyAQ+DIez+8Q6QaU4fUqX/3qWK677lai0V4Yc3g5jz7aD9hGXl6YgoJBzpkhhTiFlCH257KckxMiFqtoU5y7H/zgfvLyaoBPgEYghkgM1bX4fA0MHDiwQ+qfrgRxiYo7N3cUsB3VCqAHtbXbaGx8CXgUCANBoBeq9wGN+P0hG5oHunXLJxDoCyiq5cB0VLcAEI1uJRabxZQpE3n22RfZtasWeMLGqcuxA+IRTGK4nwJnY16GHwLPEQxW4/XeRm6uEo3+EZFJ+P3jCAQ+aJbIb/369cybN7NdiQfjHK4J+tpDUVERtbUbaGxchcnY+h7G5f5joJpXXnmtaRzOhHu6j6lTJ9GlSx969nyZ/PzFRKPP8ZOfLG8aL9ybwr4v3brdjtc7EahApJhdu/bwyCP/YPv2XxlzEhGgCzffvJaiokJ69YrQUW79nRWnkDJEa8FVI5FSYrEdXHHFxfv1HovTo0cP5s6dgc83D5HVeDzbgVX4fM3jfaWadLXQExW3xxPA57sCmIXqNsyAcy/AaxcBumF6jD3wejcAxh08EokQjW5FpI6CgsUEAl9B5GLq6k6irm4M1147imuumUI0mo9IyCqjOBWYHuiLmJffW8C7GGeGL1BXdxo33jiaXr16UVDwNOHwMrp3v5vc3L6IPMyjj/6YQYOOY+zYyQwffhIAq1f/nffe+yXr1i3h/vvvbnNQ1TidsYcEoCoYj8ZCuyaEaSjkAD2b9Vaqq6v5z//8BdXV69m+fSbl5SOprPw3KiuX8+ijP6a6urpFHLwHaWhYAyxG9U9AHqoPA4MxjizXAZX88IeDqan5tMPn+nVKktnx3JKJMaS9sdH8/kEaDg/Tvn1HqEixHRsZoX7//KSZJ9sa7yuV/Otf/+qwcyfSctwlniRPZJh1LjDOBh5Po3o8UfV4Yirykfp8fbWg4GIr01KFDxUmKBRrILBQi4sbbXqB9zUcHtYU1SEcHtqUZiKe7kCk2pY1WEVKVSSmIjE7uP2ahkJDtKSkJKnDgqmrGctKZRLGdMk/W2hsbNQbbpitIkPVJOmLj9uVqcjOpGGaZsyYoyJnKXyiUKmwyTommPUzZsxR1X3Tixhniel2LGmXjdYwTOELCkG97ro5CgU6a9Z858xwiOCcGrJPISXGNQsEvqgixer3z9dwuEoLCt5Sk5H0Qw0GSzQUKtGiotr9DoCnMx9SOh/EZM4fBQXf0q5dCzU396tW0XykUKawRkUm6M0336Fjx06wDh/HWIeD2xQ2KlyigcDCpB5uyTy5RFZqTs4whREq0mhfUgt0b1rtkE6f/h0Nh4ftk+rcvORKmhwnUhXWqbO9CBOVhgnjU6mwS0UiKrJJRYp05sx5TftXVVWp39/XNkS2Wi/IrfZ/ElK4rqkhUVVVpTfcMFs9nqHWeWh9UwME5ilMssfHFDaq13uOQkhDoSEuE+wh4hRSFiqkOGVlZRoMDtRQaHVTimwTg6tQYbyKDLOeYcNt9OKTM+4ivHLlyrSV1VpAUhNH7iyFW21r9iSFIu3bd4RWVVVpODxUTXy5xQo7rcKKqHHfHqjhcJkWFq7TYHBQU7DSxsbGBC+7sHo8QzUQOEpnz56veXlh+4K7TeNptU1E6A/V5/uGjh07IWnaa+MRmFo373TKP9Mk9pJNj3OSVUpb7f04Q/Py+jWzDJje1DFq4tBVWwW2RyGqcKJtpAStRWGYXnPNjRoKDdFgcJN6vYsVvqTGDbxYjat3POp3hU6atEhhqIZCa1PS2+2MOIWUxQopPj8l/rCZlnnUPmznqMlIqU1zkfz+Phl3Na2pqUl7mfEeYFVVlc6cOc8GwYwHulyvIu+rz/ehFhWN0JKSEg0Gj7VKKqbGHX67wu1qXLaHKhQphNTn+4KGQkOaZWxNnIdUVlamJSUl6vP1VjjfHltqX3YVCqUqUqLB4BCdOXNek+IMh4dpIHCUhsOlKQ98mwn5Z4rE+Vtxk63HM0LhiwpF6vXO1cLCBi0s3NI0bWKv6TVu3otofDoEHKVwkcKHGghU2ykBZ2lOToFVYgMVjrb7DbcNmfKmnlbv3lsUTtbCwnUdHsT4SKU1heScGrKAoqIiVCuor38OeCxhQL0Q49X1e1TrEDEDuHHPsUxSUVGR9jIDgQD9+/fn3HMv4fHHf4FqEONd50OkO37/CHr2/CLQi/r6eqLRHRiHhHJ7hieAdZigmRcBXwHeoaHhdSoqftssqV4gEGDEiBH86le/5UtfOpXx46+gocGPiZEGxoGigngmU9Ug27d7eP75l5kyZSLvvPM069cvY9asa4nFZrfbzbslmZB/pkh0PBDJpXv3uwmFFmFiy/2O3btvpaJiKxUVn1NXdydPP/0i0Au/fwowE3OfPBjX/FmYEE//ARRRX9+IyDHAM0SjeajG7L5FQFdM5I1KjLNMDuDhi18sQ6QSkfx9Qnk52kfm32wOAoEAF198HpBrlQ6oRjC3pw9mDswKoJJAoC/5+f0y/gDk5+dnpFwTBBNgMUYpRDBKIY+Ghl1EIqXU1n7ON785mT17cjABMm/EBNp8HnjI7v9bjIIagnnRjED1KRYvLmkKwLlgwYP85Ccl1NRcyPbtDcBOYBpQhwknU2iXICZ7bD0ezxs8/fQannnmRQKBAAsX3p4SN++WZEr+mSDZ/K1IZC3m3h6N6n+hejaqs2louJiqql1EIuX4/Vfh840AxgOnAKdj7tVRiBRipkj0ADzGXMRu4AsYl/J3MXPOTsE0XuLllbFp0yOoRqmoOJXq6ttQ3e5cv1NFsm6TW9JrslNtPgvd4ylXj6fMmug2q8czQgsLq7S4OJo1JoItW7akvcza2loNhYbY2feqcK8dcN6sxtvqI/V6z1Ofb7SGw1u1uLhRc3JmqclX1M0OUm9VM8P/5AQzTrnCbvt7TNOYUlHRcPX75zeZUU15F9pxhUus2S5qx5IuUeit4fDOpPco1Q4nmZB/Jmk5juj1htXkJ7q1hdPBZoUz9IQTxjeN5/n9d1nT91L1+TZbx4iVTZ6UIjsVXlTjsblF9ybli9jzBRX6KYxUCOuYMfcqrFbjQHOOjh07IdPiOezAmeyymx49ejBr1rUUFNxHQcEewuEQPl8tcDVe7wXk5vYgFtuWNXMfYrFY2sssKyvD4wnZ1m0UkduBUcDXMUFTT0NkKT7fjxDJRySXwsJHELkMiM/biQLDMWaYMoz5JobpbZUB1dTXe1m6dCmNjV1paHgF1esxk2mnYUw5+cAg4DRgLPA1TMu6H9FoaVIzTiAQYNCgQSm7b5mQfybJzc3l/vvvZt26Jbzxxk8JBPwYM9pzwA+BYsx99AL3s27dZ1x++QBExpOf/wZ+/3ICgQvo3n0iPl8dPt+twDZUd6F6BzAD6ImZ1xQPrOrB9IB7YsyDNYDSpcv7wBXAueTkjGDt2o0uF1KKcAopi1i48HamTRsGnE4sNo5u3b7BKadEyM//75Sae1KB3+9Pe5lFRUWI7MDrrQGqERE8nruBPwDbGTVqCLt3R6mquqUpOvrOnZtRfQP4EeYlMgeot99nYiJcAKzGTHw8k4aGUi644Eq2by9FdTtwLUbpnYh5OQFMxpgNHwfet/tUkZPTO2lEjVSTCflnA4FAAL/fT05OGKM4QhhT2jZMg+JhYDLV1V144YVXmTJlIn/96zOUl39CWdkq3nvvl2zZsoI5c07E7z8H1cHAKuAvmHQS6zCNlpj9XIuJ3v4uZoJsDuXluRjz7UVEIpuorW3MuAn9SMEppCwhEomwYMGDPPfcy3g8vYhGy5gyZSKLFr3G+vVL2zWrvyPYvn172suMjyX4fHfi9e4AKlH9GJEZ9O0borR0AKpvAn9FdRH19R9TX/9dTOqAQkTuBEZixhJew7yETsP0rr6OCUXzawAaG/OBL2NC06zAhAn6CvA6xrFhDtCASUOwBbiJvLxLgPq09GIzIf9swTRMqvH5LsI4LDRiInb8DFgDvInqO4i8w1NPfcJjj/0Y2NtL7dGjB/fffzdLlvyZnJw9GCVWhGlkzMM0TiqAlZhGy6WYpIt5wFKGDXsYE61jA3A0u3bt7FRjeh1KMjueW9IzhpQ4rmAm/l3aFJ16fzP60zkBtjXq6+szUm7iWEI4fLKGQkN11qz5Wlg4RIPB9zUQKFWPp9JOaC217rtBhQ9t5IWomtQRr9mxoPPVpBKoVrhF4Ww7xjRMTSTvSrstpntTTBSqyHA1EyyHKgQ1Ly+k4fDJTXOkOnqyZKbkny2Y5+USzc0dr2Zi9Af2Xnze5Irv8ZQplKhIoRYW7p3E2tjYqLfccpd26VKoMMD+H0oV6tVEcI9PCzhaobcdLxqsZlJtTEOhOk1MOeL3j8r4vMDDDY7UeUjAzRibTSkm7PI9B3n8hcA/Mf31DZicxTltOfZQFVLLPEiFhUM1Ly/czKEhP3+nhsOlWlQ0QsvKyprm38SPC4dP1GBwYLO5M+nk448/TnuZiSTOSZoxY45NFWEmD+fl3amwQc0E1qBVIsUK81Vkt5qcRhPsy2aLdUyosS+iz61COilhYLtMzZyjiF0/XEOh1RoKlWjPnv10/fr1aW8kZFr+mSb+DIVCQ2zDoLtVImVqJkFvs4ppj71nr6nXe57OmXO7nnLK1+297q9mzlF/NSlMVtn/wVqrjNbYc7+iJh2Fmc80efJHCf+NfUMWOQ5Mawop87af9nMNxqD738D1B3OgiJwFvAI8iVFso4EHMKOl81NaywTi6RQ8nkXk5BRRXf0WjY0zMFlMuwMx6uurgQCqeYwceTK5ucXU1GwgFhuNx3MBu3b9Dgjz8MM/57333mfRotfSasobMWJE2spKRtz8cued9/Hii5tRfRORY1CtIBKZRW7udCIRL8a0UoQZX7gZ1aMxJp5GzHhQAXsdGgow5rgIsN2u6223xzBmnEpgB3V1P8bv38TVV3873rBh0KBB6br8jMs/W1BVRHphxvp2Yly3vZh7GMTcrypgOLt2fY9HHjkNc++Pxzii/B97A+e+hHFY8QLnA7V23xswbd1tgIcXXhhi05xvBTYybVrHBTHudCTTUofTAnjsZy4H2UPC9IwWtVj3/4A9QPGBjj+UHtK+wULjJqShaqIONKpI1AZ4LFGRYi0sXNcUFw1mKlya4LK6WUUmJE081pEsXbo0reUlI1GWJpFhpZXbOjUuwStsCzmiJrvrCoWBmpOzUv3+NWqygd5izXHVCSafUjUxzC7RvQn44q7dIxXGKXxd+/YdoeHwvtl+00E2yD+TxOMbmozB8Rh131Q41j5H8fh1l6qJzhF38R+jMFbhNN3rLh5VE3h1gsJ1CmfaHnUf+x/50P4fLlZYoTNn/k1FPlKRCTp27AQXy+4Q4Eg12TVdyEEqJKCf3f+aFusH2vXTDnSOQ1FILdNY+/1V1sywUE1ctk26d27LBPV6r7cpudfZ+HbDFTarxxNLiEb9kYZCQzud2aC5LGNN2XXhfatcdtmXUFT3ho85SWGp5uVtsy+uIjXjD2UKs+3LaIVCnZpYZkVqxg/C9gU1V2G4er2zVGSCFhZuSWkUb8eBadmoCwSqrWLZZO9RSPdm9p2f8D+IjwEusvtssevjceo+UhiixlQ3WE0sydV2W53uDag7WAsKBmfMXH4k0JpC6sxedqPs50eJK1X1U4xf8MiOKDQxDIpqjF27dmH031RMBtKvY7y5TgWW0L379wDweIowJoOeGBNUnCgihXg8wbS6nmZDgrjmOaWEbt26UVgYtFsrMWY3MOY2D0Z+O4CjaWyM4PEcg5HnOZh8N38AlmHMNeMxJpyrMZ53LwErEPk+Hk8vdu/+PfCInRO1N9vvk0++kJY5Kdkg/0zRMrll9+7dyMvLw5ja+gB+jPluBDAF6MLesEEX2f2M5+VeYhjTXQjzPPbCzG3qYbf7gHuAJcyefRm//OUTPPTQfVnh8Xok0ZkVUoH93JFk246E7c0QkWtFZImILCktLaWiooLS0lI2b97Mjh07WLduHQ0NDaxYsYJYLMayZcuAvS+Q1atXM336FVx44S/o1m0D555bxtCh5Ywb9xBjxsxk1Kg3OPPMB+jd+0tMnvwtunat49/+bTkeT4C5c+8CNjB79nsATJv2Id27b2PixPX07duVaDRKeXk55eXlbNy4kZ07d7JmzRp2795NSUlJs3rEP5cvX04kEmHVqlXU1tby2Weftemajj/++KZzLFu2jFgsxooVK2hoaGDdunXs2LGDzZs3E5fRZ599Rm1tLatWrSISibB8+fKk9SkpKWH37t2sWbOGnTt3snHjxlavaf369UyffgVXXfVrotEypk5dSjS6leuvfwOv18ukST+nd+8NnHnm54wc+Rljxvw748ZdzbBhUc47r4yCgk1MmXI2gcB0Zs6cADQye/YNwDvMnPkgHk8vJk8+n1BoBOed14uhQ3czbtxKTjihiJEjR3PmmTGKi+s577xVdO0aYfLkrUAvlixZcsjX1Nb7FAwGD/q/l6n7lOr/XlFREdOmTSAaLePKK5fh8SjTp2/lqKPKOe+8QQwdOoBx48YzZkwXRo68hjPPvIHevScyadKpeL0zuO66WqCC2bMXAzB79lJgJ1dd9Qnduzdy0UWVDBjg4/TTR3LssRs59thyTj/9cwYMqOaiiz7hqaeeJxgMpvSajsT7tL9rapVk3aZMLcAZmObJgZa3kxx7sCa7K+z+w5Ns2ww8eaBztNfLLhwerh7PUBUZpnl5E1RkuHo8p6jIMPX7++jNN9/RLJ1BYeEmzc0doHCGDZ9Tpn7/Wg0G028qypYxjJYhZcLh4er391Gvd67CaGuiOUWhr5qUAyvV42lU+FBFLtFA4N6m3EVdu15lTXOfWzPOPbp3HKlUYaOKTFKfb47NXbU25VG820q2yD9TJMuRFQpN0pNO+pr27HmOer2z1HhRdlf4ihrPySprjjvHmt7iebRKFT629/pWNeNOC6zJ9gxrCozZ/8E5et99D2b68g97aMVkJ2ZbdiAifqB/G3atV9WNLY7NxbjELFTVe9pQ1jmY2ZFjVXVxi211wH+q6q37O8cJJ5yg8dbwoVBXV8ett97FSy99Tk7OfyCSTyTyMfB9rrvuyyxceDsLFjzIk0++gDEh7GDatEns2dPIs8++jMcTRKSK6dMvZ+HC29NqPojFYng82dPBrquro6ysjKKiIh544If85CclNDQMor7+VYyJpgyPpwATzTmH3Nzt5Ob2IT//D+Tm9iUaLSMavQmv90M2b+4HPIKR+Q8wJrt8YAd+fw/y8/MYMqQ/q1cXkJPzGDk5RU1RvK+9dhT33393h19vtsk/3cQnkic+G9OnX87dd9/Kffc9xJNPvoBqd6qqPqWxsSeqdZjU9hHgaCBumd+NMdtWYf4nAeByYCI5OXOJxT5A1YPx2NvOKaeM5o03ftdpI2WkChFZqqon7LMhmZY6HBcOvofU3+5/dYv1R9OBTg0taS35XOJgabI5LpmeHJvN82CaT549UX2+YvX5ijUcPlnD4WF6ww2ztaKiIqncGxoa9Oab71Cfr4+KDFGRsPp8xXr99TN18+bNTTJvy33rSLJZ/umktecgcZ7abbfdY3NZhdQE2h2sZn5aNz3mmNH6/PPP60UXXaZdugQVCpuSMt522z1aVVWl77//vr722mtNSRyd7NsPh0MPqT0cbA/JHvMvYIeqnp6w7i6M63d/Vd26v+Pb20NKJLGFfzjMaWhoaMDn82W6GvslUaZAUvm2Jve6ujo+/fRTAAYOHNjqPcnUfTsc5J9NxO9nZWUlW7Zswev1Mm7cOMLh8D77wP7vuZN9+2mth3TYKyQROQHTq/FgZre9jHGJAnhNVevtfn8BBqjqkIRjzwX+iAmC9SvMxNgHgSf0AOY6SK1COtxYt24dgwcPznQ1Oi1O/pnDyb79tKaQjgSfxRuBbyf8vsQuYOYUfWa/x7O1NaGqr4nIRGABxu+6DBOp4f6Oq+6RQUFBUidER5pw8s8cTvYdx2E/KqqqU1VVWlk+S9hvvJq4MS2Pf1VVv6yqXVW1v6req6rRdF7D4Uh9fX2mq9CpcfLPHE72Hcdhr5AcmaEze3hlA07+mcPJvuNwknUcEmZmvCNTOPlnDif7juOwd2rIJCKyDZOyojMSwoS/dmQGJ//M4WTffgaoamHLlU4hOQ4JEVmSzEvGkR6c/DOHk33H4Ux2DofD4cgKnEJyOBwOR1bgFJLjUPlppivQyXHyzxxO9h2EG0NyOBwOR1bgekgOh8PhyAqcQnI4HA5HVuAUkqMZItJPRH4jItUislNEXhWRtuSoQkQeEJHXRaRSRFREpnZwdY8oDlX2InKCiPxURFaJSL2IbBSR50VkYDrqfSTQDtkPEJHficgGEWkQkQoRedvmW3McJE4hOZqwCRLfBEZgAtZOAYYCb4lIW3Ir3AT4MBHUHQdBO2V/GTAKeBw4B7gNOA5YIiL9OqzSRwjtlH0+ZpLsXcC5wHSgFnhNRL7VYZU+UkmWJMktnXMBZgFRYEjCuoGYNJs3t+F4j/0cgklyODXT13S4LO2RPVCYZN0AIAbcm+lry/alvf/7JOfLBT4H/pDpazvcFtdDciRyPvB3VV0bX6GqnwLvAhcc6GA1+cEdh8Yhy15VtyVZtwHYBvRNcT2PRNr1v2+JqkaAakzCUMdB4BSSI5FRwEdJ1n8MjExzXTobKZW9iBwDhIGV7axXZ6DdshcRj4jkikixiNwNDAP+I4V17BQcCQn6HKmjANiRZP12oFea69LZSJnsRSQX+DGmh/Rk+6t2xJMK2X8fmGu/1wKXqepfUlC3ToXrITlakmymtKS9Fp2TVMn+R8BYYLKqJnvROvalvbJ/FBgDfBP4E/CCiHwjBfXqVLgekiORHZjWYkt6kbwF6UgdKZG9iDwIXAt8W1VfT1HdjnTaLXtV3QRssj//KCJvAz/AeZweFK6H5EjkY4w9vSUjgRVprktno92yF5E7MS7fs1T1uRTW7UinI/73SzDepo6DwCkkRyK/B04WkUHxFSJyNDDObnN0HO2SvYjMBL4L3KmqT3RUJY9QUvq/FxEP8BVgXaoq2FlwwVUdTdhJgMuBBsxEPwXuA7oBX1LVWrvfAMzDdq+q3ptw/GlAIVAMPIHxMnobQFV/k7YLOQxpj+xF5DLgBeD/gIUtTr1TVV3vdj+0U/b3YMx97wJbMf/96cAZwOWq+uu0XsxhjhtDcjShqnUi8jXgEeA5zKDuX4DZ8YfSIkAO+/awFwKnJfz+jl3ixzhaoZ2yP9uuP9suiSwCxndQtY8I2in7ZcBsTLSMHhiltBz4qqq+2/G1P7JwPSSHw+FwZAVuDMnhcDgcWYFTSA6Hw+HICpxCcjgcDkdW4BSSw+FwOLICp5AcDofDkRU4heRwOByOrMApJIfD4XBkBU4hORyOToGIXCoitXapFxFN+F0rIldnuo6dHTcx1uFwdDpEZCLwY1UNZboujr24HpKjUyAi422LeGqm65Iu2nvNIjLVHj8+HeWlmdGYsD+OLMIpJEdGEZFeIrLLvsgmt/Ncx4rIPTZSs+MIQUS+av8fdyTZNtpuUxskteX2F0UkKiItU0EcB/yzo+rsODScQnJkmiuALsCnmCjJ7eFYYAFwdJJt7wA+TPDMzsKRcs1V9rNHkm1zE7432y4i/YFvAb9X1bUtjnM9pCzEKSRHppkOvIVJAX2aiAzuiEJUNaaqu1Q12hHnzyZEJEdE/EfQNVfZz5YKpy9wKfBhsu3ATZiMBg+3OK4PUIRTSFmHU0iOjCEix2F6Nc8AzwONwLRW9u0iIvNE5F/WQ6paRJaIyI12+z3AU3b3txLMOE/b7c3GN0TkHPt7ZivlLRaRbSKSZ393FZE7RORja2KsEpE/iMjoNlznwZbVTUS+KyLvi0iFiOwWkbUi8j0R8bc4Nj7Oc4aI3C0i64BdwKXJxnQO5twJ5FpT6Aa7/4c2B1ObaI/sLFX2M5nCUeCBlttFJB+4GvhAVf/W4rjjgBqgZa8Je53N/jsJ295O2Da1jXV3HAQuH5Ijk0wH6oBXbE6a/wG+LSL/T1Vj8Z1EpAsm+dx44HXgl5iX7hcxJpkfAa8CvYFrMS+olfbw1rJ2vg6UAlcCjyduEJGhwMnA46raaBXF/wJjMeavH2FeftcA74rIqaq6ZD/X2eay7Oq+mJfpK5jEexFMnql5GFPTWUnK+AGQB/wM2AmsBrom2e9Qzv3vQAD4L4wCmAb8SkS8qvr0fq6bFMgOVa0RkQjNFU4Ac69/BayyqxMV1jSgJ/DDJKc8DviXOhfj7ENV3eKWtC+AF9gOPJ2w7gLMC++cFvvOs+sfSHIeT8L3qXa/8Un2G2+3TU1Y95BdN7LFvvfZ9cfZ33Ps77Na7Ncd2Ai83YbrbVNZdl0XIC/JOeL7npjkmlcD/jZc86GcewPQI2F9D7tuO+A7QHntlp3dvxJ4N+F3vHf0RcyYoQKT4v8JTO/nMyAnybl+CzzaSjn32HNp4n/Tbns7YdvUttTbLQe3OJOdI1N8C+iFMdfF+R+gHLiqxb5XADuAe1usRxN6UodAvOwr4ytERIDJwEeqGh9jmIxphS8VkVB8wbzc/wx8RUR8KSoLVd2jtrckIrnWEzEEvGF3OSnJ+f9LVesPdMHtOHd1wjmqgR9j7t/4AxSZCtmBMdt1t/X2ALOA/1PVEkyPEPb2kM4HBgOPaZLxM1W9SFVnt6FMR5pxJjtHppgObAM2tXDJ/TNwiYiEVLXCrhuKMbHsSmUFVPUjEfkncIWI3GGV26mYFvetCbseg/FW27af04WAz1NQFgAiMgO4HhjFvmO9vZIU8cl+6tbec69Msm6F/Rx0gOLaLTtLFVBov1+AUTjX299xZRlXSHMwSurnBzinI8twCsmRdkRkIHA6ILT+Ip2M8byL01H2/mdsOV/D9BKuBKIYJ4s4ApQAN+/nPPt74R5MWYjIzRjPsNcxY05bgD2Y8Z+nSe6MdMDeUTvOnUz20pbySJ3sqoB4w2UusFxV3wBQ1aiI1AM9rKPMqcDDqlrTxjq2lbZes+MQcQrJkQmmYR7ua9jrQZXIdzE9qEft70+AY0Skq6ru3s95D0VpvYAZ37lSRN4FJgJ/VtXShH3WYFrnb7bTRNiWsgCmYMY/ztHmzh1nt6Ps9px7JPD7FuuOsZ/rD1BeqmRXBXQTkZOAcSSYPi07MT2kORhHjZbOI98Bvg18Cfi7qo5vQ5n9W/zul3jKtlbc0XbcGJIjrVj7/1SgRFV/rqq/ablgPKe+ICJj7GHPY0xJdyU5X+KLodZ+FrS1Pqq6DfgTZkzrCsw4xTMtdnsWKKaVVr6IFKWwLDC9JiXhpSciucBtbSnnABzKuW8QkUQPtx4Yc1kVsOgA5aVEdrYswTgdbAJ+3WJ7NUZxTgJeVtWNLbaXAt8DHmljeQDjReROEZkgIo8DAxO2nSkixx/EuRxtwPWQHOnmTExL88n97PMK5sUzHfgH8BjwTeAuq6Rex7h9jwKGA2fY4/4BxIA7RaQXxqX8U1V9/wB1egYzEP4w5sX2uxbbHwMmAA+JyNeANzEt8v7A121dTj9AGW0tC+A3wIPAn0TkVYziuhwzT6u9HMq5K4D3ReQXGKUwDXPtV7fBkSJVsquyn2cD83Svi3ycnRhTKCRx9VbVV6EpekNbEUxvPbEOPez6y4DdmMaVI0U4heRIN/HwQK+2toN1APgEuExE5qhqg4iciRk7uBwzz2gXxhz0VMJxG0XkKmA+Zs5MHkYBHEgh/RHjwlwA/FxVG1rUp1FEzgNmYExeC+2mLcAHJO/lHFJZlocwL73pmBf6VuBFzLWuSLL/wXAo554PfBW4ERPhYA1whaq+cKDCUii7HfazBvhpku1xx4Z39ADzmg6CvwJ+TMPnY+A6TINqPqbh81GKynFYXPoJh8PRaRCR2cCFrY0hiYn4scD+fEZVp6alYg7AjSE5HA6HI0twCsnhcDgcWYEbQ3I4HEc81pMwvnhExAvEVHVPZmvmSMSNITkcjiOeFmNDcRa1cT6SI004heRwOByOrMCNITkcDocjK3AKyeFwOBxZgVNIDofD4cgKnEJyOBwOR1bgFJLD4XA4sgKnkBwOh8ORFTiF5HA4HI6swCkkh8PhcGQF/x/uibd8vg5fLQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEaCAYAAABejCMwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAC2lUlEQVR4nOydeXxU1fn/3+dmApk7CZDMFhaVLYC44gKC1VqVarV2U6RudUMUWtlEBISyWKVfta7tr5VKq1X7bbW239rWfttvrdpFxYIKYZElgEAIExLIMpNJyMw8vz/OncnCJJmESTIJ83m97muSO/feOffcc89zznk+z+dRIkIaaaSRRhppdDeM7i5AGmmkkUYaaUDaIKWRRhpppJEiSBukNNJII400UgJpg5RGGmmkkUZKIG2Q0kgjjTTSSAnYursAPRkul0uGDh3a3cVII4000uhRWL9+fZmIuJvvTxuk48DQoUNZt25ddxejW1BUVMSIESO6uxgnLNL1331I1/3xQyn1Wbz96SW7NDqEvLy87i7CCY10/Xcf0nXfeUgbpDQ6hJqamu4uwgmNdP13H9J133lIG6Q0OgTDSDed7kS6/rsP6brvPPT4mlVKDVFKPauUel8pVaOUEqXU0ATPzVJKPaaUKlFKBa1rXNzJRe4VyMzM7O4inNBI13/3IV33nYfeQGoYCVwPrAf+CXyxHeeuAa4G7gd2Ad8G/qKUmiginyS5nD0GgUAAn8+H1+vF4XAcsz87O5u9e/dit9sBYvv8fn/ss/m5aSQPgUCA7du3c/DgQYYNG4bD4UjomSX6XFq6Vhoafr8fl8vV3cXoFuzevZu3336bQYMGMWTIkFj7SxpEpEdvgNHo72mAAEMTOO8s69jbG+2zAduANxL57XPPPVd6E+rr62Xx4pXi9Y4Wr3eieL2jZfHilRIMBmXx4pXi8YwWh+MMMQynDBt2vpjmQDHNwWKaw0WpPMnMPEmUcorDcYZ4PPrc+vp68fv9UlRUJH6/v7tvsUejvr5e5s1bLHb7IBk8eKIYhltMc6BMnHiZeDz6mXk8BTJt2rflH//4h9x22z2SlzdCTFM/M9McLi7XCJk69RZ56623ZO3atVJYWBh7LhUVFTJz5lzxeEbFnv/8+Utk27Zt6WfXCNXV1d1dhC5D9N09ePCgDB48WiBPoMD67C9ZWV5ZuHCZ1NfXt+u6wDqJ1y/H29lTt3YapKXAUcBstn8FUAf0besavc0gLV68UpzO68Xl2i/5+WFxuw9Ibu51MmHCpeJyTRXT3CmGUS6wQ6ZOvVfgCoHbBaYI3G997hfDKBfT3ClO51SZMOFScTqHicczPt3BHQeKi4vl1FPPFfiCQKFMnbpOYIf1DEZKVtZ6sduXC4wUGC2QKzBKYL3AIYF9Al8W8AoMsr4fIeASu32gjB9/iWRleQQuE6UKJTu7Skxzpyg1WUxzuHg8o2TmzLlSUVHR3VXR7di6dWt3F6HTUVFRIXfd9R3JyxsmTufZolR/gSutdhSyPq8UGCx2+zhZvHhlu66fNkjHHvsrYFuc/ddb1zitrWv0JoNUUVEhpjlYlCoUwygVpUpEqYOi1CaBPMnKmi2wR2C51QHmCwwTcAustTq/EoGQGEZIlCoWm22OQJ4oNV4MY7TYbHMFLhPTHB6bfbV3ZHWiIRgMysSJl1sG5GTLiCyXrKz9AjMEhlsj1kECZwtsFTgoUCgwWeBigXUCxdZ3A62Bwz6BcmvfaQIu6zoF1jM+IFBmGb1hAu+IUleIaQ464Z9bb773+vp6uffe+0SpHOudHiEwzpoR7ROINNr2CTgFhonHM6pdg8yWDFKPJzUcB/KAI3H2H270/TFQSk1XSq1TSq0rKSmhrKyMkpISiouLOXLkCEVFRQSDQbZs2UIkEuGjjz4CYP369QB89NFHRCIRtmzZQjAYpKioiCNHjlBcXEz0env27MHv9/Ppp58SCoXYsGFDk2tEPwsLC6mrq2PHjh1UVVWxd+9eSktLKS0tZe/evVRVVbFjxw7q6uooLCyMe40NGzZQW1vL8uUP07//UCZPtjNmTJDzzqtm0qRaCgryufrqqWRnF3PzzT/FMLYwa9Ycbr31XubM+TEwklmzajCMPG6+uRyXK8hVV+1h5MifMWGCjfPP/zOnnfYGl1/+a9zuSqZO/SqQzQ03/JTVqzfz4osvd8o9hUIhPv30U/x+P3v27Omxz+mJJ57m/feLufvuu8jKOpmpU69g4MC3WbLkZcaODXL++b/kwgt/R0HB77n66qtxuX7FzTcfwjBGM2vWd4FtzJnzO+ASZs36F4YR5uab5+Fy5XL11YcpKPhvLrzwi5x//h8ZO/ZNvvjF3zBw4D6mTn2NrKwfcffdzwOZzJnzFiJnMX36NJ57bgNr1rxwwj6njRs39rp7qqur45NPPmHo0DPIyLAh0oc5c24Ffsvddy8nK2sgU6f6GTjQzxe/uIexY8s5//wMLrzwCxQUDOWSS77Avn37Er6nFhHPSvXUjfbNkP4PeD/O/snWNS5q6xq9ZYY0f/4SAY81Oj4g4LOm5RFrZD1KYLs1ii60/i8UqLSWh4qsz2KBkChVaV1rn4BPDCMkUGdde4woNV7c7iLxeA6K1zsmvXzXAoqLiwX6C1wbq1tdh9cKDLD+DllLcj7rmDEC1db+sMAEaxa1Q+Ab1gwpJFAr8KA1wt1kzW5LrO9KBIYIfFXgPYFd1m9NFRgmWVl/Tz+3XojzzrvYerdd0uArGiRwszVDL240OxLr/zwBb3qGlAQcJv4sKLfR970egUCAn//8FQxjGHALMAs4hI4I8AFzgOvQVZVnfedkzhw/EAJuABYDX7WOPYjITnQ12gGDSKQcqAQyABsihzAMLxkZXiAXn8/XVbfbozBv3gNAJvBDwAsowAM8zZw59wCmta8fEAHc6Ho/aF2hFF3vLiAMPIx2m34GfB/4GE1SHQs4rd86bB3fF9gAzAWuBH4KPApUU1s7CL8/84R9btFRf29BKBTi3nvvZ926T9DP341uDzcC/4tuTxH0eL/EOuuA9X+Yvn1dTJt2c1LYdieyQdoMDFNKmc32j0W/tTu7vkhdD5/PR0aGG6gA7gDGAJcAE4EvAMOA+9Crm2Voo1LGU0+djCYl3gUMBV5Hs+7PBKagq+8AusN0oju5EHAIm20YhuEgHPYBR/B6vV1xqz0KpaWl/PnP76ANjBtdj1F4eeqp19BNWGiI3tiJfkZeGgYT16CfbT1QZX03E3gFeMb67iC6KxiA7ni2An70IsJ7wLvAFuAnwEDgMMFgCdnZ2Um+656Bc889t7uLkFQsW7aK1at/D4wH3gYKgX8AnwK/BZ5ED1Y2oMnJY6zPDUCEuXOvY8WKRUkpy4lskN5A1/KU6A6llA2YCvxVROq6q2BdCa/Xi1KVZGV9DaXuA24DbkXPhl5Bz35KgXnAacCzwNXMmfMquoPrA3yNPn0G06fPAFyud3E6f09W1jXWOdH14hJ0B3kDkcgBQqFdRCKzufPOG9OxLo0QCoV48MGHGDv2Aqqq+gA1wA604QFtMHYyZ84U4AdowxNGz1xnAeXAZejBxElAkfX5DeBe9HNYix4cZKNntrOt62BdZx76tRhq/a4beAL4Dfp5/oCsrH74/f7OqYQUR2+aIQUCAZ5//iXq60Now+NFmwUv8BSa+5UNnAwE0O1Gr454PHYOHtzBqlXLsdmSE9LaGwJjUUpdZ/0ZHbp8SSl1CDgkIu8qpU5Bv5krRWQlgIh8opT6NfCUUioT2A3MQE8JburaO+g+OBwO7rzzJp57rhCRIQSDFwDDgX3ozmowupPzA28BdwP/4KmnHMD30MtyNRw9motSisrKeYRCnyFioju5yzAMJyJHsNmuJRSaCbxJJDKZ22+/kVtvnUogEEgbJQt6tLoZpd4APo82JPcDq9CdxEHgPp56ahR6ue3z6HFVJfBl9Oh2F9qIvAyMRi/zrQGeQy/JZKAHGQ9b2xNoI5YDFGG398MwXqWmpgqRHOt4t/V5GNMcSXb2phN2ZtubZkg+n49wOBs9sHShBzwRGoxSLnrGXA24uOGGi/jylyczceJEhg0blvwCxXMs9bQNPYyLt71jfT/U+n95s/Ps6LfxIFCLHjpekujv9hZSQzQg1ukcLkoViFJrxeEoEYejRHQcywHLwXm65cT8QO644/8EvmM52PdbjvAdAl8SeECU8lvnrJOsrE/E6/XLwIEibvcBcTpHyuzZDxwTgNub6bSJwO/3i9c7Wtzu/WK3z7UIB2MsIsIQgXMF8gUGyB13zBQ4ySI39LOIC4NFU8H7S0aGdjbr51UosEA03btY4KjAButZ3S9QJZq6f5FAP8nIcIrbvU8cjkrrufqsawwWp/NjcbmmtjvupDdh48aN3V2EpKGsrMxqK3kCG63nXSZQb/090mon3xG7fVDS4tA4EeKQunrrLQYpCp/PJy7XSHG7D0h+flgMw2fFFB0UwxgtublvilLni1Il0q/fNsvgFItSYdGxLwclyvTSBmm5wLWiVKHk54fF4zkoLtdUmTRpsrhcU8XjOSgDB0ps/4ncyYmIFBUVidc7URyOlaLU9dLAZFwrMEnALX37zpKsrHxxuUZa9e+1jE2tNXj4gtjtQ+Xjjz+Wm266XZQqENgde1YN7LuDAtssozdaNLtqhcAnApeLzXZaLCZNd1SXW/FjY074wUNtbW13FyFpmDRpsjXoOcsasBwQqLCe+WTRjLt5ApfK/PlLkva7LRmkE9mHlEYzeDwepk//FiJzCYVKAIVIGTAbu/0m+vS5GJESRIq57LJPAQfQD5EwegKq0E7vXOAASs0gM3MMSl1GKDQRpS7httsK2LlzL4bxtMWyg4wML4bxNGvW/JJAINAt954K8Hq9iJRRU/MSmnAwGM2G+xZ67T5CXd1vqK09jYsu+hmaRPIRsAdNXrgR8BMMVvHCC7/iRz96ErdbMWBAMdonOBD9jKLP6xRr/yNoKcgHrWOeJBTyIfJ14KsodR1ZWWV861vXUFS0jocfXhrzGQQCAXbt2nVCPbe9e/d2dxGSgtLSUt57bx3aL/hzdHv7AppV+XXgQ2AQ8AoTJxqsWrWs08uUNkhpNMGKFYuYPv00DOMy4ELgYkzzNHJyFiESQjvZv8hHHy1DryuPA5YBIZSKAMVon5MNh8NObu53cLkG8PbbaygqWseMGbejVF7MGEWRpoBrf961116Ndu3mogkkRcDf0Wy3d9Ak0HF89NEQ9Os7EG1QCoE3gfeBd/n5z7fzve89zre+dT2RyKNo9p0PbYiqrM8itO/pi+jV60o03duFUsPJyvopkcj9iPyOurqXeOml1wmFQkAD+WLEiHOZNOlmRow4lwcffCj2fW9Gb/CdhUIh5s1bjG5DmejwyzfQg5UJwJ8BN336FDN//l384x9/ThpxoTWkDVIaTWCz2Xj44aXs2rWeu+++mry8M3A4pqOUjaqqhWgH+aUMH/4ielT9BpoF9iOysqpRajp2+1fwek/BNGuIROYwbdrNnH766TgcDutlPmxRvhuQpoDrTsJuNxHxocXmXwaeRKl8GuKMngL+yPDhh619YTQZ4RS0kYkALqqqlvH44z/kRz/6GaHQJrRBuhXtoM60jpuDlm38DD2IyECpMFCGyAFqa6cBjwHfQOR1AoFsFi1aDjSQL0TexTDeQ+RdVq/ezLJlqzq9nrobFRUV3V2E48aiRSv44x+PoAc7HwAbgfOBa9Eu9WeAMNnZ/Vi+fGGXGCNIG6Q0WoDD4eCZZx7j7rvPQqlLCIcnUFv7Kjqe5VmOHPGiAzIHA98Fnicr64uceWYF2dm/R+RzKHUJ06ef1iRGIcrqi0Rmx4xSOOxLU8DRnfwvflGEad4FrEQvp+UjEgGqUMqONkr9OXIkiJ6tbkAblEp0vFcVerbze2ACweDfgI/o2/ctNJH0SvTM9yx0J6QNk1KHMIw6srLK0cGwTuBfNMQhbQYqef31NyktLWXNmldO2GXXrKys7i5ChxEKhZg1634ef/z/UVm5At2ebDTQvH+PbnuvAV/DZvN26apF2iCl0SKis6WionX8+tf/hdN5MroBe6wjFHp07kF3klUUFpYRCNTw9a+PZ9u2D5r4G6KILgsqdQmRyKS4hutEQyAQiHXy/fp9D9Mch15S2wqUoVQ9SjnQy6SfoSPor0BHKlyN9ueVojsXAz27ehwYQU1NkLq6wejg5Wq0IeuHJp+60UGvn0fkc9TWXgj8B3jJ+g40HXglmvY9gC1btgDpZdeehlAoxEUXXcGzz76OHnBEY46OomOM9GBHB0u76dv3KpSq6NJVi7RBSqNNOBwOzj//fDIyAihVDvjIzQ2il4tC6I4wgO7IthIM/o0XX9zFo48+E/d6jQ3de++9fIyj/ESE7sR1J6+Ujf79H8I070Gp5ShVjt1uR2QHSi0EIDe3EngV7YTuh67/L6BHuRvRhulk9PJcBnq2NQD9yo8D/o2e/fwTmIhIBKUew+l8Cx3fFEQbvkNAOUoNRqlBhMNljB07lhN52bW2tra7i9AhLFq0gg8++AitpgL6/XWh20cNeqmuAu2/rMXh+EmXr1qkDVIaCcHhcDBt2i1kZWWj1Gx27YqglADb0ZH9t2IYw9F+iAJqax/h+edfibt8E2VmAQwfPvyEXqaLIp5vrV+/ZdjtI1DqErKzr8Q0J2MYbwE17Np1I/Br9FLaX9FG6H/RRmYKeumuBr0kJ2gDtQPd+TyDHh2DJkU8A2QSifSnouIlNGvvXvTy3rPoUXM1sJfbb78Rj8dzQi+7DhgwoLuL0G7oGfgL6Of//4Cb0T7EQ+jnG1X6mIx+9mXcccepXb5qkTZIaSSMFSsWMXv2V7Db/80553wXkTFopYDNwAM0yNtkoJSXSKR/k+WbE5mZ1RqiKcNvuWVKs07+EH37FvGd79zBP//5InfeeSPhsBZYPeecnwCr0WSFq9BKDnnAD1AqG62ANQtthOzoDudR9GyqGq28odAzq2r00utrhEJ70E7uP6Md3p8C8xG5lYkTz4hRfxcsmMX11w8CPn/CLbv2tCXJUCjEggVLOXKkGr20awKL0IzNLwAXAZei9ev+F7t9LG53ATNm3N71qxbxgpPS24kZGJso5s9fIiedNFVyc98TnbqgQGCrKFUlhiFWMG2heDyjm0jSN89Ie6IHxDZPGe/xjJZJkyaLxzNaTPM0USpX7Pah4vGMkkmTJsuAAddaCgsLpF+/G6zA2bAVUX+9FSB7QJQaKXCKpeowRGCiFfx6kRWRf74VCDvZisQ/Q3R6gYGikzAetYIjS6zn6xK73SsVFRVxylwgM2bMOaEyyfa0wNiFC5dJVtbZotU8RljbMus5Vwr81QqAdQtsErf7QKenFyEdGJtGMhAIBHjppdf46lfnkpU1kezsk9HpKb6LyGdACJEdZGUtZtq0m2LLN5WVlTz99GoOH17K4cN9KC0to6bGxDCeOiGYWfHQnDoN77Jt2wBsNggGy4AC6ur6UlX1Rd5/fyO1tY+ghS5/x3XXzUI7ocM0ZUgdICurhmnTvkxW1jjg9yj1InoWlY1mzP0Z+AMNMyQTPbvqD/wI7UcIopf5RmEYIzHNQZSXl8cp8z957bWSFv2FvRHbt2/v7iIkjEAgwDPPrKaubjjwF/SS7h+ATcBStJ/wUeB0YASwj1BoVvctvcazUumt98+Q/H6/FBUVtXsUFJW3GThQrC0iDsdhgQcEXKLUSLHbB8u8eYubyMvMmDFHlDpVDCMUm0UZRrlkZ1eJ1ztRioqKkn2LKY2obl1UPim62e33C1wuSu0Xw4gI7BS40JrJlAi8LzrpXsga3ZZZI91oMj6dZryiokIWLlwuDscQUWqERLXKHI5KMc0KSyJmqzVTqrJkha61ZkmVorXMykXrExaI210gPp8vbpnTiRZTExUVFTJ16resZx9Nwhid+RZaM6LhAnMFPhJwi1JOmT9/SadLQ5GeIaUBDX6c4cPHMX78dQwfPq5dfpyo8/3WW/9t7VH065eLy/Vt+vY16NevjuzsQbzyyussW7aKUChEIBDg9df/hJ49lVnnZQD9CQQ+IxQ6dMLl1mnMqosiEglQW/sGOhjWi4gfzXh6AZ2Pqh4t5XKYOXPeQ/uG6tEK3luBImy2M8nOPpny8nJWrVqGz/cpf/rTszidI/B6x+JwmPTt2wc9OypA038PomdZz1rXW49+PrXo3EmKQMDP8uWrjikznHh071RPPxF9xwcNGsuvf70bPfOJJmEMo5mXg9DB1P8D3Ak8QN++Lu67bwaPPfZQtzFe0wbpBMPSpd/jySd/x6FDcORIFocOwZNP/o6lS7+X0PnRwNbnn3+2kfP9IBUVV1FXdyZVVX+mvPyPVFf/ieee05H7Pp8PpVyY5i3AbES0hE0ksgeRuQQC9ZxxxkUnFMEhHqsuEvGhqdkuQBAJopfRRqDJCHPRy2jf4KmnnkUn5LOjqfffRalvkZc3D6UqyM7OjjEZJ02aRG1tCaWlWykrO0JFRRXaIB1CG7qB6KU7P5rccDsNCRo3ATVkZf2GV1/dh9+/74Sle0eR6uknli1bxXPPbSAYdKAHM5XoZJmCbkdhtDLHHvSzvhhYy7e//fUu0atrDWmDdAJBryf/lNrakej4E+0DqK0dyTPP/DRhP86KFYv4/vevjAW2+v3nEgodRKkXUeo0wEltbS7B4MOsWfNLa/ZzGNO8A9OMBsSeBXwOGENd3fscOvQ6Tz75H5Yufbhzbj7FEE+xQuMzbLYjiESNRjSVvA2dqfMy4LfMmTMSndl3gvVZQG7uLMLhOYwYcRJnnnlxjMl41VVTCIfdwEp0vJETHTv2HeB6dAaW8eg0YJXWvmfQcU7ZKGWSmXkWGRk/QiRCODzrhKR7R5HKM6RogLXIvWifYR904PrtaMZlOfrZL0T7frPIyBiD2z2ab3/7zm6PBVR6OS+NjuC8886TdevWdXcxEsamTZs466xLESlEqYbRrJ6xnMGf/vQiF198ccIdSyAQYPfu3VxyyTWWlNAHjb7VozCX66u8//4rrFnzCqtXb8YwngYUpaXjgddRqgCl9KhNZAemORmf79MTonMLhUIsW7aKNWt+iV6aO8KIESexbZs25jU12ejZzzx00sRVaPmfyWgR1aiRMjGMPrhcBiNHnsy2bQPIyHiWjAwvodAuysouJCvrHQzjVYJB/VuRyF50h3Upmjr+BHq2dRjt7D4Z+AQoxeG4ln79lgIQDk/kuusm8vrrf46V+c47b2TFikXd3pmloQkX48Z9iWAww1ryrUOTX6rQy7CD0EQGAbIxzRtwOGZgGJdTVLSuy947pdR6ETnvmC/iOZbSW+8kNRQWFophFDQiFogYRkSUqhQYIU7n2XGT5cUjQHzyySciokkOHs94MYzRVt4kiW1KbRKXq0D8fn8juvAYcTrPFhghSlWKYUQanRMSwyiQwsLCLq+b7kTj+m1cT6Z5hiiVLzoR4j5rmyqwQu6++2OLlDBY8vK+KjNmzIlLOnC7i8QwJohh+CQ/Pyxer1/c7iLxeCrEbh8qDQn8fBZBwhejeoNX+vadIS7Xtth5Tudw8fl8HSbF9AZE234qYv78JaLUZNGJF6dYz/aoRWL5hsA9FjFmuMBmcbn2d0voBekEfWmD5Pf7LdbV1phR0sZoi0CBeL3+JrFBzWNOGhurqMGKssVM8wFRamrMKClVLEpNPiapl9/vlzfffFOUcscxYAfFMDwnnEGKB7/fL9u2bZP585eIwzFEGpLxfUegWLKyPhGYLKY5KPZM9ODgAvF46iU/PywDB4p4vX5rsLBJPJ76Jsw4p3O42O2nW6yregGx2Hp1AudZxmqEKHWBxb5zicNxxgmf4TdV7zv6LtrtG632sl+gVCBisTKLRcejFVnPdah4PN3zLNMGKW2QRERk4cLlYrdf0ywb6HXicKw4hsY7f/6SJpld3e4Dkpt7ncyfv0S2bt0au6YOeJ0ipvmAGMYYMYwJolS+TJo0OW5D9/v9YpqDRKkpjQzYQVFqipjmoBNy1N0aKioq5J57Zondnm8Z8pFy8813yT33zI4FpNbX18v8+UvEMJyi1CYxDJ9kZ1fJwIERa7AwWdzuA00y9M6fv0Q8ntFis21pRB8PWR2ZVzIyxopShQILLUr4FsnOrjrhA5obt/1UQjQkw+3eKXCBNcg4aD3TkGWYJgq8KZAnt946vdvetbRBShskEWlQB/B4Rktu7rmilEccjpWSn1/fLLZkvLhcIy1jFJHs7CoxDJ/V2blkyZKHYsam8TKTxzNenM7hbcYyLFy4TOz2cQIjRSn9abePk4ULl3VRTfQ8+P1+KSwslMLCQiktLW3y3eLFK8XlmtpoploshlEuprlT8vK+Luecc6F4PKOsme6YJjNgp3OqmOYOMYyDotQmUWqy2GxOcbv3i8dTJUrpUbVS20WpXTGVjRM19qi6urq7ixAX0RmSXqYdbc2IKq14sqPWTHikwBfEZhsi27Zt67aypg1S2iA1QbRz83gK4gY6Op3DxeO5QAYOFMsYlTfyPU2Qr33tvmNGyO3xKwSDQZk0abIo5RSlRolSTpk0abIEg8HOuuVehd27d8f+bhxkm59fLw7HSjGMMaLUeIEBYpqDLZmfUTJz5twmMj+NByhO5/nidI6Uu+76TuzZu1zbLH/DaGt0XSCmuVzy8+tbDWjuzT6mxnWfamg8MNFyUvssv+BG0VJRuZKRcfExsl5djZYMUpr2fYLC4XBw+umnM23aLXFVm2+//UaUOkIoVEJNTTQeJgPNyKuktPTWYyR/HA5HwurdDz30GNu35+FyFeJ2b8blKmT79jweeuixzrnhXoZoIHEgEOA///kPIv1jqSv69VuK272OrKwLUWoCprnWkvn5B6++eoBHH30mprje8PwiQAjDiHYOZYTDPmpqXkLHQf0dnbLiHYLBrVRVLSFe7NGJIKCbikHc0ee5YMEsbrutALv9dUxzHToR4yQ0m/Jj+va9gQEDvE1kvVIK8axUeuv9M6QoGi+3xVvOyc29zlqmi/p5porDsVKuuOJAh0fILcnmnMjLQIkiWq87d+6MEU48ngvEMJximg/Ell71UluBKFUYIzjo/SXicAwRj6dAvN6JYpqDxG6/RtzufeJwrLTOOVUyMz2SlXWmJdS63Vr2qROljopS+0Wp/GMIKyInhoDugQMHursIMTQmHnk8F4hpDrKe73hxOofJt789T8488wKBPDGMUWIYrpRYiSC9ZJc2SK0hngFpcJS7LOrwmJi/6aqrNh1jPBozw+Ix86I4Vg+vYTsRde0SQfRZOJ3DxOMZL5deeo3Y7deIx1MiAweKmOZOUepLYpoLJDu7ynJcjxGlSsQ0K2JGKTu7SpQ6VZzOteL1+i0DtFUyMx9sxJLUau0ZGReLVoY+aNGGS6zlnxKx2UbLli1bmpSxoqLCYnFqwkyUWOHxlPSqgcb+/fu7uwgxRJfoPJ6D1oBiisB6Mc0N4nYXid0+zhpwHBC3+6g4nfvE6by+2wcIaYOUNkgdxvz5SyQ392pxu4tiM5nzz58Ra9SNR2kOh46diY7W442Q/X6/eDyjYqPo9AypddTX11v+tnxrYDBKCgouECi0mHRisel2Cjgtf89IAU8sxkipg+JwVIpShaLUqFhckWFMtIzNUIGiRhR8n8A663o7GjnGQ5ZfwiNnnXVBE3/UsQK69aJUmTgclb1qoHH48OHuLoKINF1p0IOLUaJFjkcLjLd8f4NEqUJxOCrFMHxiGKXW/0O6NWVISwYp7UNKo02sWrWMGTMmYBhXx5Kx3Xzz6bFkbNGUBJHI2wSDfwPWEwzuobp6FRkZXgzj6Zi/KRQK8cgjT+D3+ykvvxOfbwvV1dWEwwdPOAmaRDF//hLefx9gHfAvIpG3GDXqc8Dr1NQEEYmgRW6HYRh5DBiwCtP8JjAYWAlEEMkjEDiAyDxM82YMw4FSTiKRz9ASTn2Aq4hEHkKkDpEIhnEW2nc4Ey20akPLGM0EMtiw4RCDBp3Ggw8+RGVlZSMB3UOIVBOJHEYkQiDwGdXV+3A6nV1cc52Dw4cPd3cRgKYCvZGID5GjaO3B14A30KlE+iHioqamHi2u6kapU6mpyWHRouXdVvYWEc9KpbcTY4bUXiZU4+Nrampi+6KjNI+n3lqqiQa5jhGv199kKS66xOB277eWGEaJUqeKwzHkhA62jIfoMp1SToslddAKdDwoLtfHAqNEqd2xgFeXa78Yhkc8Hp9F+90vsFJgjMAEUapAYIC4XNtk4EARh2OlwDWiFR8OWjThqQKLLH/hQWumNcy6xkTRCf/GNQq6LBSn83qZOXOueL0Tm10zZF33WsnKOrvbl4mShWjb72400Lz3W6y6PGtmVCCwXOCI9fdGgYomAehKjRKPZ1TKxSGlZ0gnIDrKhGrMotu9ezfQdJRmGAZaIytsaeXlEon4YmrQ2dnZrFnzCobxNDbbYLKz5+F0vk5u7v/D4TBZvHheWg+tEZYu/R7PPvtbRHLR6SEAsgAnV14ZAgxEtmIYBuGwD5F5ZGXZCIf3AHkYxmAMYylKrUWpZ3C71+NwnEQ4PI9QaBfB4Cso9RP0yFmAvsDjwG/RyRbvxTS/iVJ90EndfoyeSf3BKo9gGF4ikcd47bU/IVKG3T4Vnb7iq+jU2JcAI8nOfqPXJGKMtv3uRlSg1++/hmBwBzr54nvW5ybgB8DNwHxgH3qm7ANmY5o3o5Qz5VKGpA3SCYjmWT9F3mX1ap0qIlGMGTMGaJpGQSkD07QDlYgcQKc2ILYU5/f70R2lk6qqhzh06FwOH55ORcU9+P0hiouLk36vqYZj6dYtH/fMMz+lrm4U2lhE0Gkp6oEgv/xlPlq1+UYqK8cCF3P33acza9ZdwKOIlFmdTxilQjgcpwI1ZGfXc+ed44hEJgOglI3s7Cy8Xg+macMw+mAYgt3+VbKyduJw3INp3ggsAJ5EC3T2QQuyQiQSprLSTnm5MGSIh1BoDoZxEkp9ZKm//5Xs7AfJzDyJ3pIzKdr2UwELFszCMA4BK9Dtw49+RsuBn6DVvTcAX0BkAkpdgmmehmneQSqmDEkbpBMMUXl6w3g6lmituZ8nEXzyySfAsWkUcnKyyco6AtxGVtZRDONqpk8/jRUrFsWMV1XVEmpqtEGE9xD5O8HgCB5//NleMYKOh0RnpVGDtXnzZmpr61Hqh8AUYA46f1F/4DO+851XAQOlcqmtVfj9ut6WLVvI3Xefhd0eAG5FZCummYlpBmIDg8cee4gtW94nLy+M0xkmJycHwzDo378/TmeYvDxh5871zJ37dQzjchyOP2MYbwN70YYx6o/IAOyIRBBR7NmTz+jRdUARsAel+uNwDCAnJ7tX5UyKtv1UQHl5OdnZJ+H1jrVWF0LoZzMWHT/2kbUvB5GdGMYg7PZvIXJfavpr463jpbfe60PqDMp1vFim+fOXyLZt22Jr1FH/06xZC0SpfEvaRit8ax21jZb/o6BX+pIa03Mb68nFYyp6vRPF6RxqySrVW/6a5Y38OB7RWmWXiVIHYjTtxnTeiooKmTlzrng8o6V5fFmiZRJpUPRwu0eJae6wWFxTLH9TSKBQlLpeHI6VMZbkrFkLJDf3umO083qLDymV0OBHOiCG4WvEhCwWnZ5+neUHPGCxI68Um83Z7e8Yadp32iCJJC8odd26dXGvHS+WqXlHm5k5phEFVTvqNVV4ojida3td55VInTc3Dm53kegUEFsEKizadaXo1AHDZM6chQI7GqXvKBWXa3/c2LCWiCutBUU3RuNBjMdTK337LrU6O20c7fa5sYBcr3eibNu2LaHr9lTEa/vdiWgAu6b4R43RFIEFloG6QJTaaaWaKRalXOLz+bq1zGmDlDZIMSQyMu6s33K7i6w4pR3idh8Vw4gGYpbEWHm9LR6pcYeu1Qsap4eYKIWFhXENlt0+X+ByiyVVJDrY9VIBt8BYgR2ilN8y5tF8R+2f5bbFttRxY6PFNHfGBhK6PP+OxTTFG9T0Zj27VEIwGJRBg0ZbLLvzrcHCYsswHRAdIO1vlOpllLz99tvdWuaWDFLah3QCYsWKRUyfHk0lruOKon6eRPHRRx+1eUw8f5XNNhy7/VaCwZn4/XuIRLBiKGaRkXEthmFax/YOBzho4ofIYSoriygtLaOs7AilpWVUVBQSCvmoqakhylQEiEQChEK7yM5eSEbGRuBidIrxe9E+gQxmzboauBmRc4lElmK3ZxKJHKIjfpqWNAij/iyAkSNPJhi8F5EQOgNpBHiIjIyrMQxH3FTm7dE27ElIpO13JZYufZiSkpOBW9Dpyv8E3IcmNNwL3IBS+hlostFhxo4d202lbR3pFObHgZ6Wwrw5AoEAPp8Pr9fb7k4jEolYNO+WsWvXLiZNutkS9myASIjy8uGEQkcR6Qco4EaUmoHDYcc0a1Dqki5NqdzZuPDCL/Lee6DZUGOBh4FfkJmZS25uBL/fj2m+RzD4C4LBV4A8IpE9QD+UOgN4CqW8RCL3AdsxjP8iEhkMBIH7MM2hmOZnTJ9+Gg8/vLTdz7bx8X379rVSq+tyiJTh99cAN1Fb+waQi8hhMjLyCYc34XYXoFTFCZPKPJG231UIBAIMHXo2ZWW/RBNeXgJ+Y/29Ez14eBPDGGYZo2lMnBji3//+a/cVmnQK8/SSXQvo6LLK5s2bE7p246WoqFyNy7VTDMMlLleh2O1zBK5toqGWClpbyURFRYWY5kCBwVagotMiKGwVw/CJ231A7PZrxGY7JZa0UGfyHSZaS+6AFdDoFy0Ls09uueVDMc2KJjmq5s9fIsFgsInmXVvZXeNlBZ40abI4nVNiz83pXCtKnSrZ2VXicJSIUmsFdothHBTTPE3+9re/ic/nO2GW5xJp+12Fbdu2iWkOt9rVBdbntwU+FjhXbLY8UcqVUsKqIi0v2XV7p96Tt55skFpLT54IEo1Wb5pNdrSVTdYrNptX8vPrm+TvMYyJYhgemTlzbq9xgIuIzJw5V5S6ImZ0tfN5isBKMYxS8XjqLRJDXkyYVHf6Z1vEgZDlkC6K/e9274v5ojyeevF4LpBt27Y107zTqeWdziktGvhjfXwHRKnJYpoPNGJf+i2VB62L16AYUSjgkvHjv9DhdtQTkSpKDSIi8+YttvyMuy0mZoHAqdbgJ0/mzVssPp9P3n777W4nMjRG2iClDVITHC+xYefOnQkd1yAMOjmWWts0d8Tt9JzOtd0qZ9IZiArJakMTEsOol6j8j3Y26wys0SyfbvdRy8BUWUagQKDYMkgNM6Qvf/mTGDGiMd1a13Nxk3QhpvlAXJJIPPafx1NvPacG2SctM7RCdIK3LdIgCTRF4GSBy08oineibb+z4ff7xeEYIrBJYJFo2acS6/lsFJvtSrnnntkp+T61ZJBSYyH0OKGUOkkp9RulVKVSqkop9Vul1MkJnistbGd3crG7DckIjs3Ly0vot+rq6igq2ovL9SJu92g8Hhf9+4/Ebv8xweCLhELaaS7iR6knmDbt5pjPI1FVg1SGz+dDKScOxylApbVX0FH1/bHbq1Eq+hqWA2VkZNjIyMjBNG8BHMAsRHwolQVcAUzns88MlDJiZIJbbrmOX/7yt8CTKDUIwJJvepra2t8j0u8Ykkhj2acGBIEAItlEIg3H9+37LWAtcBU64dslwGi03NAT1v10LMi6pyHRtt/Z2L17N8GgHRgEvI5+Dm7rWw+h0GOsXv3fDB8+rsckSezxBkkpZaLTWY4BbkVTTQqAt1WUWtI2XgAmNtu2J72wKYL4HRHtYrdpZljiv2WzDSQjwxbrfPv3H45puolEJh/D9OtNWUej6hSmGcA0M4HDKCXo5nWYnJzhlg7dYi64YBwic2PZe03zDrKyIDPzXZQ6CzgV03ydiRPrOfnk7zWpt7vuugXDcKGUGwjHfl8bpf6Ew2XHsO8ayz6JhKiqeoiysvMRuReRXfj9P0QkRChUTCDwNbTadz5wGLgO/aq50MyuBkTb0e7du3v8gCIeEm37nYHoIK2yspJnnnmOSKQcPVDIRT+bqJ6koNQYYATh8MvtlgbrLvQGOsxdwHBgtIjsBFBKbQR2AHejhw1toVhEPui8IqYWGndEjY2S1qNLjDacKMuo5d8qJTu7no0b38fv98fYYIFAgAULlvLrXxeTkfEuGRlewmEfq1fPBlbx8MNL23m33YuotNLq1XMwzafJznZTX19CTc0ClAogchnhcBm3334jDz30IA899Bhr1lxCJJKLYRxh3rwbWbBgFvv27QNg2LBhOBwO9uzZQyQSaVJvSh0hK6ua2lobDSnnDwCfcfvt045h2zWUbTZ+/1CCwT3A31Eqi4wMH7W1s1FqNFCLYZyDZnCNQc/k5gC/QOvpHSIjwx27bjh8kEBgH5dd9g2UcgGHufPOm3oNA687GHahUKgJ87G6+jNEzgFuBJ5HDxJ86BlSJWBH6w0ewWY7DZGnWbPmEhYvnpfazNV463g9aQPeAv4dZ/+7wLsJnC/A9zry2z3RhxRl1c2fv+S4fEiHDh1K+DcT8VdFSRYeT4EYhluUiiafi/T45H3xFBEWLlwm8+YtFpdrpHg8FzQhAyTCfIxX/5pAMjUWwKrUJlFqskyaNLlVll00K3DUxxetd7f7gDidI8TtLhCP56CVibbMiv4vFhgpGRljrcy1Dc/Wbr9G7PZxXRJ43R1oT9tPFhq/Qw0kk62iVLHlPxokcIUVRF0icECUmioOx8qUzMZMbyU1AAeB5+Ls/3/AoQTOF/SQrw6oQS//XZTIb/ckg9ScVefxjJJJkyZ3WN5l9+7dHfjtln8r+sI5nWsttl1IDKO8UUbU1HqhOoLGhuZ4SSXx6r+xfp3Hc4G4XAUyf/6SNp9pUVGReDwXNFGQiG5O5zhxucaL1xsSp7O2SeZRwyiQe+6ZJQsXLo89W63oMEjc7v3HJU2VymhP208GmpNPopl+tc5hiWhpqe0C91ghBSNEqVHicKyMSTqlWv23ZJB6vA8JyCOa56ApDqMXVtvCy+gUmJcD09FSuX9XSl0S72Cl1HSl1Dql1LqSkhLKysooKSmhuLiYI0eOUFRURDAYZMuWLUQikVhU9/r16wEd5R2JRNiyZQvBYJCioiKOHDlCcXEx0evt2bMHv9/Pp59+SigUYsOGDU2uEf0sLCykrq6OHTt2UFVVxd69eyktLaW0tJS9e/dSVVXFjh07qKurY82aF1i9ejO3374Gw3iPO+74Gdu357F8+Tz++c8X+b//e5VFi+ayf//+hO7J5XIlfE8VFRXcddctFBb+g9/97gds2/YB11//FWw2G+vXrycQCCASwjCe5oYbbPTrV8dXv7qRk09WjB//GWPGHGT06G1ccIFeroreU2FhYdx62bBhA6FQiE8//RS/38+ePXtS4jkdOHAAl8vFgQMHeO+9Dzn99BVceGEdgwZVceWVVfTr9zhVVVUEAoE276muri52T3v37uWRRx7nnnvm8ve/b+brX7+C666byB/+8Asee+yhWLlauicR4ayz8iko2M1FF+3F7fZz9dWfYrMd4JZbvkhFxR5uuOEdyssrueuujWRkGNxzz06GDs3hO9+ZzqJFc/nnP9/gL3/5MX/4wy+YPPlqTj45h8mTd5CdXcd11xWSkeHljjtuwefzpfxzaut96tevX5e2vc2bNzN06GmMHx/izDNLGD26D5MnjyQ/fy9Tpx7ANPtyzz0BlFrCnDkz6NOngvvvvxu7/Q6mTNmC3b6fL37xJ3znO3dQXl7eYh/RlffUIuJZqZ60AUeBVXH2PwyEOnC9HOAz4F9tHdtTZkjJElRtjK1btyatfHqEPl7c7iLxev1WJtmpVtyOFg3tTUs+yVBcb1z/ydAmbOkagwePsXTzplhU75DAFrHZrox7/c5oa6mGZLb9RBCvTk1zucC1AoViGGHRivDjRGf0HSEwQMAphlEgDscQWbhweUrFhtGLZ0hH0LOk5sgl/sypVYhINVoM6vzjLFfKIBmsuuYYOXJkUsoWCoX48Y9/TllZEeXlN3Lo0LlEIrVkZeWjM45eiGFc1m6tvVRGY6JHFCIR6uuLETkcI5W0RnuP1n+y8lvF0ze8/vpBFBeXAm8CZ6Cp3hcBXyMU+oBvf/vOY67TPD8WEFfnricjWW0/UTSv00gkQN++l6Gzwl4JfA6tdTgEeBtYi1KbgUvo0+dSsrImYBhGzyCUxLNSPWlD+3yOmc0A75AAqaGFa/4YqG3ruBN5hvTJJ5+06/dbctJHR+amuVOUKhfYYQVgDhPwyDnnXCgVFRXtLl+qo2FGUiLZ2VWiVKEodYWY5iBZuHCZ5ZdpWf0gWv/Jzm/l9/tl27ZtMn/+EsnNPcUKzPWJUlWiVLUoVWQpR7esGJ1oWoueiva0/WShvr5eFi5cJqY5SAzDLYZRIJmZHunb9wzJzf2bGMYoUWq/5VOqtwKpD4phjLFWHlJrdkovJjXMQadEHN5o31B0Wsv7OnC9fujUmG0as55ikES6NuVEFG3JEzU1lBHJzCyzWFz7BEaJ3b5RnM7es1TXGNG6cTiGiFKnxpzQbvd+sdvHHcNca+lZdcZgI9pWXK6dMaUIKBelqsQwRHTai1zZtWtXq9dpPhBJp6PoOPx+v8ycOVfy8qaIy7XfkowqEbv9GsnK8ohhjLKMUXRZNSRKhcUwJloGKbUIQb3ZIDnQsraFwFeBr6CTyO8Cshsdd4pluL7baN984KdoMv8l6MDaQrRfqk2mXU8ySMketSaSpKwtI9g8T5Bmb4WspHP6RepNvofm0LJCBeJ0ro3J9EQpvUoVNmG8Na+HxvWfzMFGcwOXmfmgNGSILRaYL+CVzMwx4vGMkpkz57Y5g21M6Xc6x/X4rMBdmaAvkXAIt7tA7PZBAlsbGaSIRf0enZ4hdfUGnIzWzqgCqoH/AYY2O2YomuK9vNG+a4B/oyPI6tH07zeA8Yn8bk8ySFF01Sg13si9uV5d42M8nnqLSiyxpYaGTjq1RnfJQrzltiilNyq62tYSXOMltmQMNpqXKT//qGWURgkMFLhcbLYt4nBUNllmbO33Fi5cJnb7OFGqwKIrF4jdPk4WLlzWkWo7odBSOITDURIjAXk8F0hWlleUmiKwU3R24WJL2+47Kame36sNUndtPdEgJQttjRKbzn6iit6jrZfKHVP0jr5wbvcBK5izOBbQ11sFV6NoyWg3nyHl54fF5dovHs/oWD18+OGHxyyHzp+/RLZt23ZcddXSEqDTuVGUcorLtV+ys6vEMMqtdCEHRalR4nRe2+KSot2eL/AlgaJGoq9TxDQH9cjn2lUzpKYDNp8oNVJgr0RVvRuM+0Bxuc6LqebDGQIugeGilDsl1fNbMki9gWWXRpLQHjHTc889t9XvGzPJqqtXUVOzGZF3gX8i8nd+/etili1bFWN3Gcal2O2XA+eSlXUSImFKS8dx+PBtBAI1PPLIEz1Sy641xGOkifjJysomK2sxkUgp1dXV+HxbKC+/E7+/OlYP//M//8vq1bpODeM9RN7lhRd28OKLvz4uJlvLLLlFmOYgbLaB1NQEiUoTKeVFKSew4BhWXygUYu7chQSDR9FhgVcRiTyEDvV7ltraELt37+5wWbsLbbX9ZMHn8yGSSyCwmrKyixGJAF8EPgFeROR/0Qs651JTcwDTvIm8vNdwOn+Jx7MZp/O/cbtzefTRh3oGw45eIK6axvGjI2Km0SC6lhDt2MLhb1NT8xLwtKVrVonDcQoZGc+wZs0vqaur4+GHl1JUtI6PPvoN9903DaV+STD4AfBbHI61OBz/6THikO1Fc7o1fJ5bb72YGTPOIBA4n0BgAnAtpnkhDseHrF69mUWLVlBVVXncVO9Ey6TUJdx55zgcjqOEQiXoDL8ZAIj4aNBL68d//vOf2O8vW7aK114rQat4vW99bkZkldUW+h9XObsLbbX9ZMHr9eL376WmptAazH2I9i4UAnMROQ+b7WUcjh9TXx/m0KGJHD48jSNHrsPvfwJ4vIl6fo9AvGlTejuxluw64hSvra1t87r19fUyY8YcMYwCyz/ka+KQbckn4vGMijGJenOupMaoqKiQGTPmiMdTYEnwFIhpDhKn84MmeYk8noPidA6X4cO/kDSqd0to7m/UWnnXx3I7RfMtORzLJSvrOwL9xOU6J7Z86PGMFper2GJ/1VmOdp0HCtaLwzGkRz7PRNp+MhDNd6TUViux41xLr67EYtGViFJTJTPzQVHqVMnK+nvCGobdDdJLdmnEQ0cDK/fu3dvmtW02G4899j1cLkVe3lE8Hhc5OTmAspaDjlUWj+YPyswcDESoqnqIQ4fO5ciROZSVHWHBgqW9bukO4NFHn7FmE/8E/o+jR/+LYLA/dXVjMYyGEW5GhpeMDBeTJo1oElgLtFinHYXD4WD48OGxEfaKFYu4++7TMc0vIXIGcDF2+yhqal6htvaXQD5lZZ9RXj6Q1av/w5EjisOHoylHDqM5Ry4gh7597+fee49VIO8JSKTtJwM+n4/s7JNwOAYjshf4A/A40ZxHOrXIU9TX/wqRAP36nYbH48LtHo3L9SJFRfuoq6vrkrImC2mDdAIhno+ooyoOiXZ6DoeDadNuBu4jEjkEtB65n6jvqSeiJR9ddFCg1A8IBFZz6NC5VFZ+H5FS/P49lu9AQ6cIqWL48GFdroZgs9l4+OGlFBdv4p57rsDthqNHVyMyAr2M9CmwkVDITnW1n/r6UkTqUcptLdGFgK0otZt7753EQw892Cnl7Gwky+An9juHMc0a8vKqUSoXnXe0EtBtQsRu/Z3BoUOfo7r6YQwDbLaBdFSFpVsRb9qU3nrXkl1rAaodDaz87LPPOvD7idGS9dLQtRbb7GAT5e+eGJfUVoBwlJHYVMNPBB4QuFLs9u3HLKXu3r27S9UQ4oUL7Nq1S5RyWoHM0mgrtlheJ4lS18XuRzMoJ8vs2Q90Shm7Cu1p+8eLKGVe69O5BQoFDopSBy39ulmWwvcFVhDzODHNZSn/npCmfZ+4BqktH1FHfEg+n6/d5Ug0BqojvqdURlv1Gw2QbTDAYnXgtQLfEaVcVs6kBqMTrf/OjitrzZi+/fbblkJANBAzLFBvfY4SGCKmuUQMY4xF9x8jpjlctm3b1ill7Sp0pO13FAsXLhe7/RpRqlBgoSWoukVMs0LgOxadfodV5yVWEPPAFmn4qYK0QTpBDVIiM6COqDh09ksZj9zQE1WjE52BzpgxR5Q61ZoNSrNZ4Xh5++23m9xzV3WKrRlTn8/XaIZUKeATKLVG8XnSt+/MGCnF7S5qohjQk2WEuqruG7ed/PywuN1BcThWiFKjLK3HPCsQNjoYCMVmp9OmfTtlCQ0iLRuktA+plyMRH1HUN7Bx47v86lePsHHjuzz88NJWYxdqa2s7tdzt9T2lKhL10a1atRzTrEZkK3AIKMc0MzHNAEpVcf755ze5586uf2ib8OJwOBg0yA3cCRxAxxeFgRWAG6XeIxz2YRgOlHIgspjbb/8mjzzyRLtCDFINXVH30LTtKGVgs2XRr993cbvXofOJ5qEV0SJoERrQ9Z7L7Nn39JjYo8ZIG6RejnipDqApIysah3TmmRfzzW8u5swzL26zkxgwYECnlhvix8P0tDQUidQ/QP/+/Zkx4zb693+A3NwKPB4XpllDJDInrgHuivpvy5ju3r2burp64CO0CteFwOeBUcCvMIwy4OImzw7kmIDenhZj1hV1Dy23nUikCqXq0azFHdbeDOtzJxkZlQwbNqxLyphspA1SL0ci+WmWLVvV7k6is9k7gUCAvXv3snjxPIqK1vHeey9TVLSuzZlbqiGR+o8OCH7xi9eor9/HkSOTqKoqAD7fogHuCvZUW8YUQCQHGAj8BXgW+DNKLcQwBmOag3jrrddjz27x4nn8/Oe/6rSA3q5CVzHX4uVBOnr0QyKRWdjtNnT3vQCIzqq3AveTmZnR2mVTGmmDdAKgtZlGR+OQTj755E4pazzViEceeYKTTz65xyzTNceCBbOYMmUgzWcLUUMTHRDAu/TrtxGncyN9+57DDTd8jTvvvCluLEln1X9jtGVMhw0bRk3NQXRnmIXOaXkKIvVEIgcxDD1Sj8YydUaiyO5AV9R9FCtWLGLatDH4/edw6NAwjhy5mWDwAxyOLHSmnHOB64CrgW+QmXk2OTmn9Ji6PAbxHEvprfeQGhojniM5SjmOOp4bqwK0xmbbuHFjp5SxO/I2dRaaM9TipWvw+/3ido+U3Nx/i8dTZdV9RExzpxiGSzye8XET9HVW/bd8D8cSXqJKApp6PNVSYYhYJIfLZf78JU2u1VvSm3dV3UexePFKyc39uvTp8zdRqsgijVwuOk35xwK7BT4Qm+0z8XhKekRdkmbZpQ1SPFRUVIhpDoqlBjCM0bFEcV3dsHtLhxVFW8Y1GAzKOedcZMWRTBAokMzMB8XhOGypaU+I5YTqbqPc2mDG4ThsxUyNEpggSo1ukd7dmwYcXYGysjLJzHRZcUgTrFijBwX2CHgFzhCl9oth1ItShSmZaiIeWjJI6SW7ExyPPvoMIueiVYP/ici71NQU4vdf0yqbbf369Ukvy+7duwmH+2MY7ib7e9qSDiQmyXTZZV/h44+zgXfQabn+QX39dgKB7yNSC1QgUoNS2ccsoXZG/beG5jJC0OBjcjiOkp//CG73h7hcL+NyvUlOTh8GDx58zHV6A1GlK+v+i1/8OvX144B/oQVq/wFsR+cVHYpeLr0UuBilLmPq1ME9qi6bQ2ljlUZHcN5558m6deu6uxgdRiAQYMSIcxF5h5oah5VWQCHiwzS/RHHxJvr373xF5lAoxLJlq3j++ZcoK6tA5O84HKeQk5NNVPdOqUsoKlrXY/xIu3btYtKkmzGM9wCIRAJEIj4MwwtM5o03nmLixKsQ2QjkIFKPVr8+BFwEjAQ2YhinAIex22/C4XiT999/heHDh3fTXR2LBx98iNWrN8cMb9THdNttBcyYcTterzfuMwsEAvh8vha/TwNKS0vJzx+LyDvAqTS4/H3oNqJQKpe8vDVADRkZt7Br10c9oj6VUutF5Lzm+9MzpBMYDU7mfHJycvB4XLhcuXi9Y8nOPony8vIWz03mKLHBqf9P7PZ7gZUEAsVUV/t7ZOwRNMweQqHimEBsefnNlJaOo7r6M0pLSwEXSg1CqWyUykQnLM5Ax5TsRKcbeK/RrHVvjCbe1TOkltCcsAGfZ9Sow/ziF6+1GmcUnXEBCefgShV0Vd1//PHHiOSiBWkr0FqAghZXtQHnolQVhmGi1BM9L9VEHKQN0gmM5rRepQwyMmxWIGrrqtHJSlLWfGkrJ2cRpnkG8FVqas6lNepzKiPKUPP7r2mUz+YfiPwekXP429/+BZQhcgA90s3BMFxALZpS/QKGkQ9gCZOutFSzNboqSVxLiLIhR4+ewG9/uxaAa6+9gJtvvpbt2/OA1kMIOpKDK1XQVXW/aNHD6FijMFAPfAx8BmxBz6SLyco6imFc3SPfkbiI51hKb72L1NCaTEtHncyffPJJUsrWONV507w+fnE6x0lhYWFSfqc7UFFRYeWzKbTEMEtEKZ8oVSgOxxAZP/4LotSXRKniRuKjXxKbzWulCfc10fJrzHpMVv13FPHajdN5vZjmoIRIKT2Z3NDZdV9fXy+zZi2wpIFmCpxtkRkmWp+jJSMjV2bNWiB/+9vfulRbL1kgTWo48ZDIKLSjTubTTjstKWVsKfhSxI/NFuyxEecA5eXlZGefhGmeDGRiGG6U8qDUqdTU5HD22acxcWIIpc4CRqPUWYwfX0dubj9Msya2hBpVbWg8a01W/XcELRE2lHqC2toQSmUTiQQIhXYRiQSOIaV0NPYtVdDZdb9s2SpeeGEjMAK9PHcS8Fvg99bnSYwcOZxf//r33HTT0oSUVXoK0gapFyMRBYaojl171RB27tyZlDImomTQU+H1ehEpp6ZmL0r1pyHtdxkQ5n/+56/89a+/o6RkM3/841O8//6feOutN7jrrluIRGYTiRyKLaFGIrO55Zbr8Pl8BAKBpNV/R9BSgKvOwdOfysr7Yj4zndtpISKHY8a0pwfIdmbdR411nz4/RCc1/CWaUTcWTXoZA/yA7duLCYf/1GPll1pC2iD1UrR3FBqP1tsahgwZkrSy9gYqcDw4HA6uu+5qYL5lhEDEB8zGNG9GKSfFxcU8/fRz3H77XL7ylTmMGHEukUiEadPGNKkPTRR4NTbTffXV33fbiLhljbVDZGRUUVu7g0jk54j8FZG/EwxuZOTIBqWNRPX9UhXJbPvNETXWmZkjyMi4FC2cageUtVUCHkQ06ai6upqMDE+PmV22hbRB6qXo7FFoWVnZcZ3fGB2dpaU6AoEAd931Lez2jcDFgDYupnkapnkHcISf/vSlY2axzz+/FcPIiNXHLbdcZxEF/hE7ZsOGqm4bEbc0qw2F7iUUqkM73ucicg4iz5CV9SRFRftinWVPnxUns+03R3RWXVn5AOHw29bec4DFaLp3PZqNWQ2Moaamnupqf4+ZXbaFtEHqpejsUWh2dna7z2kphXcUrc3S2jo3ldDYd3fllTNRKoO+fbMYMOBx3O51OBzTEbmPW265jl/84lXgB4BJKLSrSRAs6Of40kuvHTPT9flu69YRcbxZbZ8+H1tB1o2DOHcRCr1E486ytLSUSy+dxI03ntIjZ8UdafutoXHb1u/ASdTUfAz8Dh0w/Qe0qvcP0YZoLvBVlOoH9KemJkgoVEJPmF22hZ49BE2jRURHoatXzwaaBi1On378o9D6+vqEj40Gvq5Z8wo6h8th7rzzJlasWNTmLOh4zu0uRH13hvEuGRleHI6DVFdPp7Z2CpmZp6DUEaZN+yZHjhzm0KEIIj8EfgPkYhiV2O0343AMaDTaPXamqztF3cl3R6BsdFa7ePE8fD4fSilGjDgf3Ym60ctL+cAz1NdfRCSi6N+/Pxde+EU++OAjdGxNGeeffxY/+9mzuFwu/H4/dXV1Kftco2hP228N8dr2LbdMYd26QrR6x0j0nCELWIZWZHgem+0sQqFdiPhQyovIIUKh5cyYkfqzyzYRj3rX1oZOePJ14G5guvV3QUeu1ZO3VKd9dyQTbKLYv39/wsceD8W3p9GDW9Pj83hGS2Fhofj9flm8eKU4ndcK5At82RLMjGZb/bKY5qBYZtV417vqqk0ppe+n05mPFqWqBMqt7KVifY6Rm266XSZNmnwMzR2ukMGDx8RNkZ6qaE/bbw3N27bbXSQ5OZMs3bqjllBtdKuz9o8Wl2ubOBwrrdTwE8QwXDJ//pKUrrPm4HjFVdHaFU+jU0OGrS1ibdH/DwBPAacmet2evKW6QYqiM9JFHz58OOHf7qhgak8UW20prqqxenr0vtzuIgGPwBar445Yn1skM9Mbu794Rvn882eklFH2+XxiGE4rlqqqWTpzp2zYsCH2vU7Rrje4X+BycbmKe8SAQyTxtt8amqYnr7cMzGiB0Vb80XbLCEXbRYmAS6C/uN1FMQOWm3v1MarqPQEtGaQ2fUhKqRFKqd8Am9C5ijegcxR/C7gKnYjjW8BK67tpwCal1GtKqdQR3TqBkQiDrr0+msOHDyd03PGQK3oiPTgR3130viKRGjSVt8A6KmJ9FhAO92P37t1AfH/NzTefnlL+Fo/HwwUXnIN+/atjqhNKLWDSpHOs9qKlkqIQCaBFfZ9ExAn0jHikRNt+a4i2AaWyqaxcQE3NJiKRP6F9RjcCs9AiqmVAkfV/iNNPH41hXE0kMgnDuJoZMyawatWy4y5PqiCRxdotQCFwG/Bb0a2oRSilHOiMUbOsc7OOs4xpdCI66qMZNGhQi981RuMOurFh0YKprTthj+fc7kIivrvofYmUozXKygGPdYUISpWh6b0ajf01USM1cODAlPO1vPXWG1x22Vf44IOzgDwM4zDnnHMa3/3uItxuN1GppAaj5AMGAK4m95KR4SUS6T7/WFtItO23BqfTSXX1Z9TUnIWWB/o7kI3ukpcAjwNfAIYDe4E+KKX417/+is1m67XCtImw7K4XkfNE5KW2jBGAiARE5EXRdJupx1/ENDoTHUlfDsQ6xrZwPBTfnkoPbiuuKnpfSj2L7oDuRXfOApQCs8jKsjVRqQiFQjzyyBNcfvl1XH75dB588KGUi87Pysri3//+KyUlm/nzn5/lnHNO56OPNnHVVbM588zPY5p9gWlo/T4QiQB7sNmOYBgNabdTPR4p0bbfGhrSvvwYTV4YhSaC1KIJH/+FTi+xCPgfoIaZM2+nf//+7Y4Z7FGIt46X3nqXD6kl+Hw+cblGitt9oN0+mnA4nPDvHA+5ojOJGZ2N1nx30fuy2wcKnCowUpS6QJQaJVlZZ8u8eYubHN/cj5SfX5LSvpaWCAzZ2YPEMFxiGKPEMFwyePAYcTqv7zGkFZH2tf14aPAflYjDUWLp0+23Mu6WNvIZjREos/4eIX/4wx+SdAfdD7oiYyw6gutnwNxkXjdVt55qkKKdodM5TAxjdEy8c+DASELpy0VE1q9f3+7fPR5yRWcQM1IBFRUVMnPmXHG7C8RuHy1KOcU0h4vTOSLGnIpH7njggfUpS+5oTHBoTGDQ/7tk06ZN8vbbb4vP5+uRA46OtP3GaE58cThWiFJTBXZYxqfYSgm/3GIs7hBwydq1a5N0B92PlgxSuxP0KaW+1dJXwBeBG4DDIuLq8LSth6CnJuiLJlVT6hHKy69C5O8olYVpZpKTk9MjE+J1F44n0Vzjc5cv/z7PP/8xdXWrqKvTsSUwl4kT4ec//yEXX3xbLNlfY0Qik3jvvZdTytfyzjvvcNll9wCfxvl2NG+99RyXXHJJk70nUsK+hsSYOk5NJER19Spqal5CJAwEgOuBhUAQeADDeJuqqr29pm5aStDXEa/oC+jF7taQVoDoBiTyUjdo3OmXwW6/iZqaeYg8QU1NCLvdj8jcNoNn169f3+U5eVKp02qLDBKvrNF9TqeTRx99JnauSBmBQBCRd6irywX6o5QbkRd4//1z+dGP1tCc3HHbbetZs2ZISpI7xo4dy7EEBqz/D1vfN0XjhH2pjuNt+/GILw7HdPr2/YSKireIRPKBPwJr0QKrfenbt29yCp/i6ChNR7XyXQTtkUuji9AeplxzKnVOziJgFcHgZUAEEWH69FvapBR3pTFKRbWG5moM4bCP1atnE4k8jGEYTYzNN77xJUwzm1deeR3Iw+/fRyTixuF4A6VshMN7qamZiWZZ9UMvWkQAL3Ayr7zyG26//UZeeKGhA1uzZkjSVDeSiUAggN/v5/zzz+LDD6ch8jxKDUITGaZxwQXj8Hg8bV4nlZGMtq/fr1WsWXMJkUguSh3hm9/8Eq+9Noaamqut2VItSilMcyoOx5spyzpMJjqyZPcOx86QFDppxzB0usvLReTjZBQwlZEqS3bRJbio3lkDzfg0Hn54aZNjmy8XRKFz10xmy5b3E+owPvroI84555yk30tzBAIB7r9/Ca++uo+MjB+1eX9dgZbqMBz2EQicR1bWBJR6hEDgJ9TW/gERA6jENG8jJ2clpaXbEVkEfIRhnIJIGSJ+4K/oNANRZeeDwOex2zP4wx+e5X//9x1eeklLDN166+XYbJkpI6HUfNAQiZTTp4/BgQNlKKUHERdcMI633nqDrKyeHQmSzLbfeCYNxNqVzinlwzC8iPh73RJ6S0t2ySY1PIMe2q1N5nUT+N2T0GJglWhS/2+BkxM8Nwt4DChBL9i+D1ycyLmpQGroiJpBMuR4jpdp1Baizm6PZ5QYRoEoVSAOx0rJz6/vdrWGltQY8vPDYhgFkpV1t8AggSsspYISgX2i1FQxzeVW9titAqNEqQpR6oDAGQKXWw5tsRhXUwU+L5AnbvcE8XpHy/z5S2Tbtm1SVVXV5ffdGlpqU7NmLYgRGHoLOrPt9zSprI6CLsoY+4b1eXqSr9silFImOqpsDHArcAs69P1tK0i3LawB7gK+C3wZbZj+opQ6u1MKnGR0RM0gGfmHPv00nsO6bTRXhGhJISK6JBaJ/B0dvf5Pamo2U129qs3762y0pMYQCpUQiRymtvYg4ABeRMeXGMBA4Clqa3+FDucbCeQish2RDLTi90fAucAFwCXo2KQs4F2U+hci7/LCCzt48cVfs2/fvi6510TQWu6tX//6Dc4///wev0zXGB1t+y2h8TvQW3ODJYx4VqqjGzppRwT4MJnXbeM3Z6N19EY22jcMCAHz2jj3LPTy4+2N9tmAbcAbbf12T50hNT63o1Tqmpqadh3fQO/VIpoez2iZNGmyeDyjjhHVbKrzFRbD8IlhhESpg2IYY8Tr9Xc75TneSDYvb4rAAIH3BCZaM52wNds5KoYREcOYKLBWYK+lW+a39Mo+E8iTrKxZotRwgXMt7bIdYhg+yc8PN3muZWVl3XLf8ZCIfl9z9GQaf3vbfkto/k40fwd6av0kApI1Q1JK/ayF7W9oPTsBapp9t+Z4jGYb+ArwgYjE8gqLyG70sPqrCZxbD/y60bkh4FfAFUqplKe2HK8SQkcjvg8cONCu45srQvj9f+L99234/V8/RiGi8axPKQPTtAOVKOUCcgmFNne7WkO8kew3vzkE0xyCUkPQ7Cgf2hdkB6qIRPQMSr8id6Fz2zyOHjtlABFMswSX6//Iy3scpYZjGHmYph2l9KsanRkWFRV19S0fg+jIXqfCSCz3VuNcUdHst6mmONEW2tv2W0JrKim9Wo2hNcSzUq1tNFX3br61+F17f6cd5TkIPBdn//8DDrVx7q+AbXH2X4/uNU5r7fxUmCGJdI+aQXsUj5vP4qKzHh0oqWc8jUf/Pp+v2awvItnZVaJUoRiGRzyeUSkTPOn3+6WwsFAKCwvF5/OJxzNaTHOnwAMCUyyfUL3ARstHNFhgpMAia1Y0VWCBKDVV7PZhMnPmXPF6x4jHM14MwyWmubNJwLLbfUBcrgLZuXNnt91zvJH9pEmTxels2/fRG3wkyVb77ilK9skESfYhqRa2lr7rTOShmX3NcRjIPY5zo983gVJqulJqnVJqXUlJCWVlZZSUlFBcXMyRI0coKioiGAyyZcsWIpEIH330EaBjF0AzdCKRCFu2bCEYDFJUVMSRI0coLi4mer09e/bg9/v59NNPCYVCbNiwock1op+FhYXU1dWxe/duHnhgNv/85xv85S8/5sMP/8Ldd99KTU0NO3bsoK6ujsLCwrjX2LBhA6FQiE8//RS/38+ePXsSuqeampqE72nXrl1cdNEXyM93cPXVn5KZeZTp03eh1CBmz76FSMTHbbetJyPDy5Qp11JRUcGDD85h4MDvMn78Jk499RDnnXeAL3/5ZebPn87f//5bvvvdBWzdujWp99Te57Rr1y5+8IMf8tRTP+Hqq7/N97//BCNHnsy99/4Rl+vbzJ//JZT6AnfcsQiv93quv34QZ5zxMpde+ivOPns6Z59dyxe+MJtTTvkLX/vaOfTpE+G008awbdsHvPrqo8ybdw+zZv2RcLiUG274hNra7Vx66Q/p1y+XH/94Dd///hMUFxd3edtbtmwVlZV9cDj+xhVXvMigQX/G6RzHFVc4GDv2LsaPn87gwVP57ncvYfHiebG2t3btWtaseYVp0+4lI8PLDTdswDSdfOUr9/OHP/yFbdu2xcrw0UcfceDAgW55n3bs2EFVVRV79+6ltLSU0tJS9u7dS1VVFTt27KCysvK436d9+/bxta99jcxMN9/6lr6n6Dtw6603cfDgwS69p87oI1p7Ti2hI7TvDmmdi8iKjpzXFpRSR4EfiObRNt7/MPCAiLTIiVVK/R+QLSITm+2fjObgXiwi/2zp/FShfXcHSkpKGDhwYELHHhuZHqG0tAyREEpdhtu9DsNwNFGI6Nu3r0Uj/iV6XHGEO++8MWVozhCfbh8O38vo0RUUFe1DkxbKufbaq5g+/VauvHImhvEe1dXV1NTUE4nkoCfinwM8mObpmOaeGJ29gUr9S/z+TGpqDmG330q/ft/jjDN28PHHK7qc+t4a5V2pS9i48V38fv8xwcuBQID//Oc/TJ36ABkZa4+5biQyiX/84wVefPHXKRVvFg/tafstoa167E0U73joEtp3d2zohfqOLtn9ml6wZNcdOHToULuOb75UY5o7RakviWk+0OrSTao6d30+nzidw2LJ0povufh8viblbrpEExGHo9Kig28ScIlpLpH8/Pq4Szbxfuuiiw51y/JOewkMjZf3PJ4LxDCcYpoPxOj7jets/vwlPWI5r71tvyX0huXLjoIuon13BzYDp8XZPxadj6mtc4dZ1PHm5x4Fdh57ShoAfr+/Xcc3JwHk5HyZiRNDZGf/T6v01racu+1NLHi8iDrlTzvtQo4c6UN5+VVUVi6lvn47kUggRjrw+/1Nyt2UfFKKw2GiVDlKLcc07yEnZyHh8F6UyqY5nd3v92Oz5WOzNUTp5+f7u4X6nkgCwsZo7LjPyHifrKy1BIMbqapaEjsvEpnNLbdcx0svvRaXOp5qyfra2/ZbQlsU765u2ymBeFZKms4WLmvrmFbOvbyj57bjN+agaUrDG+0bimbP3dfGuWejZ0K3NtpnA7YCf2jrt0/kGVJ1dXWHzms+4+noDKg1ymxnIjqqdbsPiGH4LCXmyQLDxTBGi2k+IB7P6FZTTmjSwgViGC6x2+eLaS6zVNcnilIFYpqDpKKiInZePAf4mWdWd5sDPNGRffNye70hcTprxTR3iGG4xOMZHyPgbNu2rd3U8e5CR9t+S2j+DnRX2+5K0NH0E1bH/nd00GhGAsdnAl8H3gWOtnX88W7oCMSd6Ky2X0VTuTcAu9D+oehxp1iG67vNzv8VmtgwDbgMrfhQC5zT1m+fyAZp69at3fr73bHc0byDzcwss/LVFIvOXbNDlPqSTJo0uc3rFBUVyaxZC6Rv37ECX7dirEKi1Fax269pk512xx3rum15J1FWZ2Fhobhc48XrDVt1VSLgEygRm220/O///m8LS5qpzTrr7LZ/IizlHY9BOh3t4I+g01m+gg5G/TIwCbgQuAaYB7yKTgIfBv4MjG3r+snYgJOB19GyQdXoFItDmx0z1JoNLW+23w48gaaP16Ildi9J5HdTzSB1pb+lO0dr3dV5NfafNFDX663A1gmi1FoxzZ1tliHaobvdoywK+AiBhaJUsWRnV4nHU3LMNZobgZNPPrPbR80ttbcG2acCMQy3RXkvs+pJLAPulQkTLm1yrRkz5ojTeW3Kd8SdWec9yTAfDzpskKSh454IvGR1+vHijSJABTpB3/mJXrcnb6likLpjiv/JJ5902rVbQrQDLCws7JblncadhcdTL0rtFqWKBIpEqTHi8VQlVIboCNjl2i+GUSpKlYhSU8XhWJGwwsF//vOfTrnHZKDxCN9uX2Atae5rpFoxVeB+MQyXFBcXN2m7DscQsdvzxek8O6XizRqjM9t+R1QveiJaMkgJcylF5H3gfaVUBlpwayzgtmYdh4BNwMciEkn0mmkkBy2lQoBVnUYJPuuss477GonmN2quJB3NH+RwHCQjIz92nKbMdl5+oCgx4bnn7qWmZigi/4OmJ3+GzXYGhmFvswylpaWsXv0LlPqH5bwvs3IfPU0weAnZ2feh1Z3jXyNK8kjVNARRXTul3iIQWE0w+CpQh14Nz0XrH9+IUouA37NgwRL+8pcaDONdlMolEnmQ2tqXgRA5OXD06FF27drF4MGDU4YGfTxtv60235g0ciwdPPVyXyUd8axUeus5M6TumuKvW7euw+e2d0YXb03dbh8ndvs1sX1u9wHJzb1O5s9f0uFyJVr2SZMmi1KTpUHJe4el5P1Ai0tMLaWNz86uEsMoF8MIiWFMFKdzbULLVMdT/52J6Ajf4VhpKVXMEXAKfCjwgcBuUeqoKLVflHKJ2z1SPJ4Syc6uaqRusU+UKhHT3CFKTRbTHJ5Sjv2O1H1Lbb6iouKYZc+0D6mVDVhOM39Meksdg9QTp/jteeFaMrhu934xzUHi8YwWh+MMS2ZneKcv80TL43YfELe7XhyOSsuXtEkMwyXz5y+J+9sN7LwiUapA4D1Ram/MKKWiLFJH4Pf7xeMpsO7xgZg0kv4stnxJWkbJ6x0hXu9E6/6jYrMHBSKWoS+LyUu53UU9ulNu3ubd7v1it48Th2PIMYOy7pAC62ocj0GKADc2+v9aILet806ELRUMUk+bIbW3vG0Z3Lvu+o7k5l4dCxrt7NFkvPLk54fF46kXj+eCFv0+2ojtt2YOQwROFdCdtsu1V5zO62XmzLktPq/mBIJUnSGJiMyYMccyLlEDc1RgucVEPF+0ivkM6dv3CjHNwaJUoSi1XRoU0ustg9SgkO52F6WMY7+9dR+vzTscK0WpKaJUodV+jm23Pp+v1+WSiqIlg5RIYOwRoHHg6KvAl5K2ZpjGceF41L6PBx1N49ze/E1erxeRMo4e/ZBIpCFAMBz2IVLO73//VzIz18SCRjs7mDJeYKhW4i5HqYq4a/zRe66p+Rk1NZtR6j8otRadR/IjAoEJ3H336Tz99KPHPK+W1LGT4cPrLKxatRy7vRLoB7jQ+aCWoAmsPwSGodRcjh59nEgkBMxH54Q6DBxA+5kMwEBEB9wahrdbc2A1RnvaflQySSQ31uYjkQDB4CvAsyjlJRKJNGm3lZWVPPjgQ5x55sV885uLOfPMi3ucInpHkYhB2gTcqZQabP3f2WKpabQT3ZHUKyrE2F60J9I/FArxyCNPEAgEOXz4NkpLx1FV9RChUDGRyGyuvfYqlHK2Kznh8aKlAUA4PItrr40/Tosa1ZqaX6AT8TmAUpQ6CXiC7OwcFi+eF1evraUUBWvWvJD0e0sW+vfvz7e/PQ2l9qGjKUAvtIQAJzoyYxBKeTHNwWRlbUCpL6FDHm9Dj4EFnStzDnb7jTGtw3hqEF2NRNp+44HE1KkPUFa2g8rKIkCIRPQARadTiaCU7lKj7XbRouUtpqXo9Yg3bWq8AZeiaTJh4FPr82X0LMnb1vm9eUuFJbvG6Mo4pNra2g6fm6gPqeG4kpifRakrxDQHyowZc6S4uLhbliubr/E7HEMsf9YFcZ3v9fX1cs45FwoMF1hoLdVdIFAghrGozaW+ePc3YsS53b501RpaIn9oX9ISa4lurXg8Oi2703mt5OX9W0xziVU/BQJege+Iw3FYPJ6SlPEhJdL2m7dxu32uwOWSlfWWeDwHrfizLVZAtC8Wf+bxjBaPp0Dc7gPi8dQfk5gxlZ95e8DxxCGh8zA/ik56F6FpHNIB4I/AQ2iFhqGJXLM3bKlmkLoS27dv7/C5iTht43XG+flhsdu3i1JR2ZnE8/B0BhIN5ly8eKXk5V0rkG+xyEqsmJxigeskM9MVt6OJ+qu8Xr+43UWxvFEDB4rccsvslCSsNEZ9fb3Mn79E7PbBloHJF/i8wCiBcwScMmHCpRIMBmPtweE4Q8AjffveJaa5WJQaJUqdKg7HkJRx7LfV9ptmPK4X01wmMNBiG46wPvsLfFmUKmmi0HHnnd8Wu/10MYyDYhilMWM1cGAkZUlKHcFxGaQmJ2hjdJ9lfL4H/MkySo2NVFl7r9sTtxPZIFVWVh73NVqb0cUjDzRQpCfEnNxO5xSZNGlytzCSEiFoRI9xuXaKTs631VIsiFjO/q0CzriO64qKCjHNQaJUgRjGRDGM0eJwrBS3e7+MG/f5HjNarqiokOnTv2N1wpcKfMcyUOeLUvkyadJkqa+vj6tq7vX6xelcKx7PqJS537bafuO2q0ks46yByEGBWotl+HXJzJwshjHG0jAcJTabU7Ky8i3SR6EoVWWFA5QnpADSk9CSQepIkpGVwD9F5EPgd9GdSqmBwDnooNmzO3DdNHoQKioq6Nev33FdIxrkGQ/NAwRFItTUBNE5lCoxDC+G4QCepaio5Tw8nYnWCBqRSGMfVh4iYWAIMBgoR7tiw8BADMPJli1b8Hg8Ta7z6KPPIHIuenGiAO2HupdI5BpuueWOlAkUbQv9+/enX78BKGVH5BxgL/APwINICe+99y1mzJjD7Nn3kJHhRkQ7/g3DgWE46NNnPJGIE5/PlxIBwW21/WjbDYV2UVPzkrX3WcCD9pPlAz+kvv4LmOafcTiEQOAFgsH/EA4/jlZBW4nISnR7qSUYnMHMmdf1mGfeUbQ7/YSILLeMUfP9JSLyJxFZKSLfSE7x0khVZGVlder1m5MHIpEIIoeAeTEnN9BiuoeuQCIEjegxWuDkMBBAM8/6AwZK+YHDjB07tsk1oooHOTmrcTi0EdNsvu9iGIf42teu7vT7SxYCgQA///kriAwG3gCeRIu81APPA5+xZs1fGT/+SkpLt1NWdgOHDp1LVdVDiIRShswQRVttP9p2Q6FZaIKyC22MIuguV4i2gZqaA9TUOAgGf43I4yjlRanFaAnRryJyLkpdit1exF133dKp95UK6A35kNLopWjMHoSLUOoS7Pah5OQ0sAe7s7NKhHIfPQYexGb7MjALzTzzo2Uh7+KCC8YdMztqmH3lk5OTg8fjwuXKxesdS3b2SVRVVXXpvR4PfD4fGRluoBhtiAeiu57/Qqcs+wfwL4LB/wMuR+QyRP5OTc1mqqqWdHoIQ2dgxYpF3HnnOGA/WpO6xPomA33v24DPgDsIBBYANjIz84lEwmjPyIPAOpTKZsCA58jJ6cPgwYOP/aFehrRBSqNDqK2t7fTfsNlsPPzwUoqK1vH++68wb949mOYeIpFyoGvirdpCIpT76DG5uX/CZnsfOAOYgFITmTgxxFtvvXHMdZvPvpQyyMiwEYkcAo5gms1zSqYu9L1Eqdz70J1zAPgl8BTgRiSCYRSg1LMo9Vs0sXcptbVruO22gk4NYWgvEmn7NpuNxx57iPvum0FWVg5KzUEnt65GS3+uBG5Hez32o1Qp9fVl6Fyh1dZV/Ghdw2d7nEHuMOI5ltJbmtTQFpJBamgvEmXndUfK89Z+t3E6BqfzTMnNHSJTp94ixcXFrV6zNXp8d9T/8UCrN4yxSA2TBd4UmGCpMpQJHBTDEGubKC7XjlbVL7oT7an7+vp6WbhwmZjmIIusMMIidKwQpeqsrVBggCh1naX8XmVR5a8QGNCiHFVPBsli2aW31DZIXdUhHw/t+3gR7x5TOcumFlWdIqb5gCWsOqEJu6wltGaAu7P+O4KKigqx2wcJzLAo0C6L/rxR4IDAAYv+fFAMY4x4vf6Ujb3pSN37/X6ZOvVmgWECn4hS/kYMugpRqkDs9rkx1p1hjBa7fa643eennEFOBtIGqZcbpK7ukI8nMLY1dNSgpqpCcpT2bZoPiFJTrQ5XRKliUWpyQurk8eqks+q/M3H22RcKXGnFXx2xgoMvt2YDB6xA0SnicKxMmecXDx2p+/r6epk3b7FAnqXnp3UMHY7D4nYfEMNwWaEMPsnLe1s8Hl/KGuRkIG2QerlB6uoOeePGjUm9XkVFhcyYMUc8noJ2G9RUzrJZVFQkHs94MYzRMWMU3ZTaJC5XQdzytWWYk13/nQ2/3y95eSOsGZHPUqy4VmC+FSh7noBLMjNdluJF6ipcd6Tuo++nae4UpcqtAUlDypKJEy8Xu31cLOZMz5jGycKFy5J/AymAlgxSmtTQCxClCBvG07GYmM4WGT3jjDOScp2o5tfgwafzk5/8hUOHwO//EpHIWwnrd+3evZtwuD+G4W6yvyvFOAOBALt27Tqmrr1eL+HwIWAASjVmAoZRyo1hOJuUryUx1ebCmsmq/66Cz+fDZnOjlBvIRDvzf4iOsfqL9fefGDAgl7fe+ilFRet4+OGl2Gw2AoEAH374IX/+858pLS3txrvQaG/dN34/+/cfjsORiVI2GpM2LrpoIjpO7bfA763PIZxo0qFpg9QL0F4F7WRg/fr1SbnOsmWreO65TdTU/BmlCoF/UlOzmZqan7VpUKOd92WXfYPDh3fj822huroazebqGkp4WwbE4XBw++03IfIZIgess8JAJVlZ1ccohLckptrcMCer/rsKXq8XpY6QlVUNFKGzx3rRsTlZKHUqhjEMkVxM08ThcBAKhXjgge8yYMApTJjwJa66ajZe76lMmjS5S1ieLaG9dd/4/RQRTNOO2+3E7R6NyzWSW2+dyosvvkpOzk/xesfG6P05OT/l5z//VacMKFMVaYPUC9AeBe1koaPpJxqjId31E9bsIcP6fJpg8JcolU1rBjXaecM/sdvvBVYSCBRTXe3vMkq4NqgbCIV+AfxfXAOyatUyJk48A7gNkc1AOVlZR7DbH2xSvvbMdJNR/10JbZhvQGQe2iCXo+OSKoBMlHIg4sMwKmPtddmyVTzxxC8IhcYDhejYnQ28/34ml132le65Edpf91rt/TCVlUWUlpZRVnaEQ4fKqa7eSjhcSk1NDVGDFaX368/USLfRlUgbpF6AaPBlOPztWN6gzu6QkzFCj44cbbaB6FlNGMAySrmEQpuJZ1ADgQCbNm3i+edfjnXeOTmLMM0zgK9SU3Mu8PlOT8FRWVnJU0/9hMOHN3LkyBwOHTqXQGA1Sv2ANWt+SWlpKbt27aKuro53332T++6bgNP5dVyur5KT82Xuvrtp+doz0+1pMyQNQali4BZ0Koo70EHCmYjsICtrMdOm3YTD4SAQCPDTn75IKORHqzkMQi9fDQZW8/77H3fb8l17697hcDBy5MkEg/ciEkIkl0jkcYLByVRV9eGaa26huvozQqHiJuelmkJFV6AjWnZppBhCoRCRSITa2rUEgzcDFWRlZTJr1l2d1iEnY4QendlFIocwTZOamkqgPyJl6BH0o00MaigUYtmyVaxZ8wqhkMmRI4JpmuTkCErZ6NdvKdnZ8wiFLuKtt37B6aefftxlbA2LF68gGDwDeBHwIuKjpmY2sAbIZOzYC7DZ8oHD3HnnTaxatYzlyxfi8/niau411++LIhz2oVTTjqmnzZC0fNCvyMl5l379HFRVbScYfBn4GiDY7XXMmjUt1l59Ph/19X3REjuDGl1JoZUe8uLq/3UF2lv3gUCAnTs/w27/OrW1lxGJHAVGAP8iHO6HSBiRu/H7ryEn589kZHhjA8rp00+QgFgL6RlSL8CyZat4/vmtOBzr8Hg+JS/vY+z2z2EYGXGTviUDGzZsOO5rNJbeMc0AppmJyFbgVux2P3fffVYTg9rYv2Kz/RMRYkt0UYj4sdmCDBs27LjLF0U8wkIgEOA3v/kT8LiVaI3YcmMg8DKBgA/D+NsxfqCooGy8TqY92X+TUf9dicazP8PIZsCAc8jPfxy3ex1OZw5r1/6ZVauWxdqr1+slM7MOKEMnE4hC0EoPx+r/dRUSqfvoLH7Tpk1s3ryZSGQA/fo9gsv1LkoZKPUihjESUCjlJidnNYZxCLi4y5JspiTiUe/SW8+hfXcX5TlZdNzmwZ8ez2iZOXOuVFRUNDku3n06HCtFqSmiVKHk54eTTnVvLbYrmmJAJw4st4IcI6JUpcAw6dv3jg49j0TUKKLH9SR0pJ0uXrxSbLZTBL5kxS5FBPYJfEkmTZrcDXeh0VYwc1SZwTDcViK+PIFcgY/FNDdYga9itRmf5OeHJT8/LC7XeFm7dm23KI10NUjHIfVOgxQvb1BDLpnOS+i1devWpF6vrbibePeZn18vDsdKMQyPuFzjkx670lpsl9/vF49ntBVXUmJ1lA9Y0jAjRKkRYppLJD+/vkPPo636SHb9dxYa30d7Y+Xq6+tlwYKlYrM5rU5dd+42m1MWLFjabUa5tbpfvHilFU80xQr2jea8ulLgbIH1VtLBYjGMcsnOrhKHo9LKf+QWj6cgZeOvkomWDFJ6ya6HIrqMlJ2dTVcz7ACGDBnSKddtCfGYhErZcDim43IN4O231zSJXTletMV4A2KOak1d/hmwC/gD8E9Efk9NzVrKy6+iIykUWlvag66v//YiHh0+EgkzbdqpMSFa+DzXXz+IBQtmxb2GzWbjv/5rJXPmzKB//3H0778Cj2creXmb+dnPticUo9YZaKnuA4EAzz//ErW1fuAZdMoJG1AArEATOKYgUg3cRlbWEerq6ggEPgPmI5KJ3/8NnnuusNvurbuRNkg9DM1f9DPPvJgRI04mHL63Vb9DS4GbHUVZWVlSrpNoIGhr/pVp027m9NNPT6rzty3G2+7duy1H9ZnAF9CBnd8FnGhH/Bjg59TXb6SiYm7SGY/Jqv/OQrx4quef/xTDMNi27QO+8Y0JQITXX/+A0aMnxH3moNvtSy+9Rp8+q+nT5wKUcnR60HdbaKnufT4f4XA2SrkaBUGHgUeAm4F+KKXo0yeD667LBz5Pff3ngOuAC4EPCQb3EAwO77Z763bEmzalt9Rdsou37OF0Tm0xjXdnadwdOnSo0+6npWWcRP0ryUBbPo/CwsLYEqLTWWhJ3xy00pOHBCqt/0cJ9JcJEy6VYDCYtPIlq/47A23V3fz5S+K04Wtlxow5xyxRbtu2TUxzuCVK25DGPT+/vlOXpFtDS3Wvl3ELRKkCaxk3JLBE4DqBvZYfbL6AR0zzdGsZ8lsCFY3kpLS4rMczvleKqkZB2ofU8w1SWy+6z+c7xu/QWRp3Bw4cON7b6TAhw+/3S2FhoRQWFnaq87ctH1K07B5PlcBwgU2W471SoNzqgMYIfCi5udclVVcwGfXfWWjNr+nxXCBO57BYnebn14tpLhEYKkqNEI9nVJNBxvz5S0SpyZbPRXfYUQ247tIpbK3uoz4krdM3U2CAwIcCJZZ+3xSB/WIYB0WpTdb/y8Qwwo10DieI0zm8VxMbWjJI6SW7HoS2lpGap/HuTI27SCTS4XOj6IjkUSgU4pFHnuDyy6/j8sunt7jElwy0lnyv8RJiJFKFjqeZi84QWmtt84CpGMbJ2GzPJHUZJhn131loTTkkEiknI8NtyeiEKC+/ipqa59FxXAbV1V+J+VCiy3V2+49RKgut/+dF5HvU1Kxh6tSvdEuMTmt1v2LFIu6998so9RbwGtqPdAvwLPAb4GkMYxBgIOIEngD+m0hkDyLViBxA5DNuv/3Eij+KIm2QehDaKxHUmRp3ychY2hHJo0S13pKBxhlr33vv5WNIE1GDZRiXodQbwEfAecBFwGXAqcAM7Ha7pUaRPBmYVM4Y25q/77bbpqJUJeGwj6qqFdTXA6wH3gfeobZ2X8yHsnv3biCP/v2HWzFqPiKRRcBVQC6vvPLbThuMtIbW6t5msxEKhRE5D31f/wT+DmxHk188QASRCLr7NdG6fvWI7EfkViZOPINVq5Z19m2kJNIGqQehPYGT0Lkad4cPH+7wuVG09366Q9U8Ws54jLeowdq1az333PNl8vIuJivrenSK6l8Ad5OZaaNfv5yksx6TUf+diZZml6tWLYvJXAWDvwSeRCsvCErlA09TW/t7RPpZVzpMOFxKTk4Opvk8Su1GqXcwjH9hGP/otMFIa2it7gOBAD/+8Qvo+xoC2IEsdKr2KqAIkUpAMAwnOrV7EUp9C6W+hmlu4c03X+u0gPaUR7x1vPSWmj4kkfY79jvLh1RTU3Nc50fRnvtpT8xVV6cyb3wfpjlMlJosprlDBg6MdEpuqmTVf2ejpey+M2bMEcMosHwrR0WpsBhG5BgfSrT9ut1FVk6phvid7sp51VrdFxYWilIjBYoEPrHyP5VYOaBGCkySvn0/FcMobeQPWyJud5F4vf5uI2p0NUiTGnqHQYoi0Q63s5hpmzdvPq7zmyOR+0mEBNHZmXPbKqff75ePP/5Ypk37tng8o2J1Pn/+Etm2bVvSOs5k139XQzPSRklW1idWsGhlo0y6+bFMutHn6XRGmXY+yxhFuiQAPB5aq/uPP/7YIjLkC7itzLBDBOYJeMQwcsXtHiWGUSBKjYoxBlMloWRXIW2QeplBShTRDjQeA+94EA6Hk3Kd9qKtGd/8+UskN/c6cbsPJHVGmIiha36MxzNK7rlntsybt7hdBjIR49xd9Z8s1NfXy6RJk0WpfIHxVsd9r8BlMmnS5GPqx+fzics1MvZcuzMrcGt1P3/+EoHRFtU7Sv3eKjBZwCnz5i0Wv98vM2bMEafz2i7L8JxqSBukE8wgdfZMYf369Um5TnvR0owvGAzK/PlLxDCcotSmJiPpZHRaiSx9xjvGbr9G7PZx7YyzavuZdVf9Jwt61qNTehuGT5TaJEpNlgkTLu3y5ef2oqW6j8Yh6aW54kYxaUcFNorN5olpNHZlTF0qotcaJDQxYxGwB8213QBcm+C5L6Dlg5tvTyVyfiobpFR5eTsLzWcRixevlNzcq8UwJjQSrmzwNRzPsk4iS4XNj8nPD4vbfVSUKhSlRonX629zVN/bn1kU8erK46kXt/tAqwOHVO/Ei4qKxOkcJ4YxUZQKNzJIIVHKJy7X+ce0wa72daYKWjJIvYFl9xCwHK3d8iXgA+A1pdRVCZ5/CJjYbHsy+cXsOnQFG627E8Q1Zr5F79dmewaoQMSHHqf0p6YmSChUwvEw3BKhzzcc46G6utrKDFqBiBvIIxI5GPe8KNr7zLq7/o8HzeszmiW1LWp8WzT8rkJLde/1esnI8KPzeR3CMAxrAyjFMKpibTAq5QW0qll4oqFHGySllAeYD3xfRB4XkbdF5G7gbeD7CV7mqIh80Gz7rNMK3QXozPijKFIpQVxD5tnh2O03IjKLSKSESAQikVKqq+/i9tu/2eGXPhH6fPSYysoiAoGjQB5KOYFDiJRRU+OIe17ze0j0maVS/bcXxxuO0JbwbGcjWvfN9SEdDgfTpt1CVlY2cC8ipeiYo4ZsuH379uXBBx9i+PBzmDDhBoYPP6dbYqlSFT3aIAFXAH2Al5vtfxk4QymVvCxtPQidGX8UxUcffXTc10gWmt7vvehsnF8AzgUuQasnSIevn0i8VN++fRk6dDA1NTMQOUgkcphIZDewGMimpqYMkUiLcVbtfWapVP/tRXvjz1IN69ev5/77lzJ06NlMnHhTE7WQFSsWMXv2V7Db/w2cAZyKaU5m9uxzWbFiEUuXPsyTT/6HQ4de5/DhP3Lo0Os8+eR/WLr04e6+rdRAvHW8nrKhZ0G1gGq2fzy6B7q6jfNfAI6i01KG0OHUDwAZifz+iexDSjWWl3aSXy/wscByy7E8RmCwmOYD4vGM7tA6fXSNv6KiIua/8HjGi9M5XObPXxLzXyxevFIGDPiGxRQbIzBBIF8yMy8X01yWUM6m9jyzVKv/9qIlf1BFRUWnsEKThfr6ernwwi9a+nqaPGOaO8XpnBp7rosXrxSPp0Dy8s4Up3NorJ34/X5xOIaIUlstH6f2dSq1VRyOISl3r50JeqkPKQ+osG6wMQ43+r41fALcB1wPfAV4F1gFPNfSCUqp6UqpdUqpdSUlJZSVlVFSUkJxcTFHjhyhqKiIYDDIli1biEQisZFsdN35o48+IhKJsGXLFoLBIEVFRRw5coTi4mKi19uzZw9+v59PP/2UUCgUS5kcvUb0s7CwkLq6Onbs2EFVVRV79+6ltLSU0tJS7rrrFmbPPpcrrvgupnkZ11//ONOnn8bXvnZlk2ts2LCBUCjEp59+it/vZ8+ePQnd06efftrl97R3716qqqrYsWMHdXV1FBYWxs5dsWIRDz10GXApd9+dSVbW60yd+msGDfoXn/tcBkOGnMSOHTsSfk7r16/nwQcf4r77HuTqq2dwzz1zsdv7MmfONM44I58xY85lz57PeOSRH7BhwwZefvk1brttPoaxhLlzf45Sv2TOnF8RDu/n9tsvZ+jQwfz2t4+zYcM73H33rRw+fPiYe1q8eB7f+97lKHUJt932CEpdwve/fyUrViw65jmtXbs2Zdtea88pEAjw7rvvUldXx/XXf4Vt2z7gd7/7AR9//Hfc7jyuumoqt976ANdeeytf+9qdTJt2LytWfJ9NmzalxD398IfPMWbMaG6/fSlgZ/bsXdTW5nL77fewZs0vef75n/Pii9v48pf/myFD/s0ll/yef/+7gief/BGFhYUMHjyKq6+24XQe5aabtmAYinvvDRAM2vnggw9S5jklo49o7Tm1iHhWqrs24HLis96ab+9Yx/8UKIlznQLruFs6UIYnrXML2jo2lWdIUXQWiycVlQJ8Pp8o5RTY20Q9WUf3u8Tn8yV8rfgU7nFit19zzAxmxow5MQWJ7OwqMYzyRiPgCZKbe3W7ZqaJPLNUrP/W0BalfeHC5WK3XyNQaKkaFApcI3b7/JRhGvr9fsnLGyou1zgr1mii9blclCoWt/t8cblGtsjGXLt2rRiG20oxIdI05YRHCgsLu/sWuwz0kBnSe2hFyra2b1nHHwZylVKq2XVyG33fXvy39XleB87tUrSVdC8QCODz+fB6vUlflz9w4EBSr5cM+P1+THMQhuFAC1mGgBBKZWG3D8Tv9yd0nXiMN6Wyqa31U1v7CIbhBhpYcL/5zZ8IhUoJhUrIycnGNDOBckQ2A0Xceec4VqxYlPB9JOK0T8X6bw2tieIGAgGeffZ5gsFHgdGAG/2aP0ow+CuUeiQlEtb5fD5qaxUTJlyKFkx9D72oshWR7xMKHcIwXE2IKZFIAJEAIv0wTZOsrEw04eEgIGhG6L1kZdkYNuyEdHk3QUoZJBGpEZFPE9j2WqdsBvqivdiNMdb63NKBYkSNW8e94J2MtrKsNv9++PBxzJw5l8rKyqSVIS+vrdXQroc2vHUYho9IpMwiFpRhGD4cjqMJkzniMd4iEV8sE2hD+gGhpsakvBwCgRBlZbdSWbmLnJxsnM4wAwYsZ968e3jssYeSTk1OxfpvCW1R2jdv3kwwaMcwCtBdkrI+CwA7kUgNyVRK7yiys7Opra1i+/ZvoQVTw4AXnULiVb75za+h1BHCYR8iIaqqHuLQoXMpL7+RsrJd/Pzn/82ZZ45BpBCRi4hEJiJyEX377mTWrLtSnszRFUgpg9QB/C+alHBTs/03A5tEZHcHrnkj2hj95zjL1mloKwXDsmWreO65DdTX/4zq6ss4dAh+8pO/MHjw6UmjmNbU1Bz3NZINh8PByJGnEA7fh1IRDMONUhHC4fsYOfLkhF/4eIw3w/AiUoaID0MHllBd7ScQKEZE0a/fBuz2cwgGP0dFxZko9QXuvHMMN910LZs2bUr66D4V678ltEVpLy8vR8ePHbK+iY4FDwGV+P17SaZSekfh9/ux2wfh9fZFKRtQbpXRIDNzAHPmzIixB6uqllBTsxmRvwNvkpX1AT/+cSGffHIY0/wqShkoVQtUcs45Lh56aEm33lvKIN46Xk/aaGDazUNzfH+MXq+5ptlxbwE7G/1/CvAPYCbwReAa4GfWuT9O5Le7w4fUlmpAcXGxmOYgUapA4AxL5PEBUapWlCoUp/P6pKzHp2LG0qhgp2k+IIYxxkp5PaZDLLu2fEj5+WFLhWFKTCDT4VgpMELgFMnK8kpmpkcMo0AMwy2mOUgWLlyWNFWBVKz/lpBIpmPdZqcIHBCoF9hv6cENFJgskyZN7u7bsNrXaPnc5z4Sw/DFFLtNc4e4XAXi8/mkvr7ekrByNZGwamgvoyxVb7+43UWWyveJIajaGPQQH1JH8CDwPWA28BfgQuB6EflDs+MygMbrJtVoH9MDwBvAq8DZwCzg251b5I6jrdHmggXfJRg8A722/Td0krA9iDyKUl6UeiIp6/GZmZnHdX5nwOfzoZST/v2/j9u9DqfzZdzudfTv/32UymvXkk+8fD6zZ3+F2bPPRalLCIUmotRlmOYZ5OQsorp6FTU1m1Hq38AN1NaeT339O4hsQaSQYPBCnn76jaTl7knF+m8JbcUdeTweZs26i759d6Bdt2OBcegxZB12+9ns3Lm3231IANdddxXh8BqczjBOZy52ezXB4EwCgaOMHn0us2bdz5VXXoLTOQK3ezQej4ucnBwikYj1/jmJRHwYhgObbTg223BSYTkyZRDPSqW3xLZUmyF5PKPE7S6wRmJ1AqUCInBQYIwotUvy88NJkevfvXt3cm4oiUhEc64j12zOePP7/VJYWCgeT4F1bb+Vq+egNcI/RWBtTMfMMCJW7ptR4vGMSspoOBXrvzW0pUMXDAYlP3+kwBcE3rTyCW2OzUC7M09QY4agx3OBfPnLU8ThGCIOxxmiVL4oNUogz1IszxOlXAJ5Ypo7xO2ul/z88DEzpO5UK08F0ItnSD0ObbHjWkNro81rr70Kw3DhcJwC+NGrj2F02uT+2O3VRCKHSMZ6vMvlOq7zE0V76ipZCgCNfzMe483hcHD66aczbdotRCKzCYU2I5KLyE/Q6cv7ot2Yj6CZfsRGx+GwIymj4a6q/2ShuQ7dxo3vcuedN1FXVwfA0qUP4/P5gReBycDJQD4iq6ipeRmR8lbb7PG8U22hsc82I+N99ux5lL59xxMOH0SpkxEZAWwEPgUKETkf6EtNzQwOHfqU0tIyqqp2k5W1mKwsByKa7dmT1Cm6DPGsVHrrnBlSslJCtBblrkdxJZKdXSVKlQiUCewTpUaL212UtJiOrVu3Hvc1WkNH6+p4FKErKipkxow54vEUJPSbDVH5owRyBa610g74BPYJTBVY3ikzpM6u/85CvOc6f/4ScTqHimFMsFSywwIRa4bpE6VOlRkz5iR8vWQnZIzOuqOq5HfeuUXs9u2iE/HlWc86ZJVZLP9XnsAtAgWi1ARRKl8mTrxcFi5clrJq5V0Jemv6ie7c2muQki3nE285qfFv5OeHxW7fbqXTHp7UF6CzX6LjravGddNWoGm0U9OyLqeKUgXicKwUt3t/Qr/p8/nEbh8ksNWSgqmKDQS0jFCRKDVF7PZxSQvw7KmdWLznmpt7ndjtQ61lz5JmqRsKxW4fHMsjJNKwZFpYWCjz5y/pVImsoqIi8XonWgHPmshgt++3nu9ogVGWIWpuSAsEThUYKn37zhCXa3uTVCWpKIvUlUgbpG42SJ3h34iHeDOEZKfPFhH55JNPknat5khWXSU6eo7q4ClVaBmUg6LUVHE4Vib0m7rTukAyM8tEZwmN+pJKrBGyM+ksu86s/85CS8/V7T4ghuESu32uKDXVUi6ICBSLUpNl9uwHREQ/z4ULl4vDMcRKAe4WGCB2+/2xNODJfqeO1Z8Ly913v2cNNoYLOK1ZcdQQha3vXAKbrG2yZGZOFo/ngm7zg6UaWjJIXZtI5ARGa+y4SESzbIYPH37cvxNdq1+8eF6nqTQAnHXWWUm/ZhTJqqvo2r9hvEtGhpdw2Mfq1bOBVTz88FKgIWhTqbdQqg+QgVJeRJ4mGLyE7Ox5RFlQLf2m1+vF799vReqPjO2PRHZitwd45503Oe200+I+h46qaXRm/XcWWnquNttA7PaBZGZ+ilJnUlt7CZFIP+AzMjLgv//7MxwOB5FIhKefXk8w+FdgJDoGaBbB4J8xDAf9+i0Dkv9OiUSA7yLyLEo5ee65fuisN1MwjP8QiUwDnkcHyR4ApqOVvsegQz1foL7+XKqr6fZYqlRHmtTQReiKlBCN0dk5YzozQVwy6irRhHcNuZQGogMyw4AmIUAuodDm2G+25jhv6LTKARsi5Sj1XZQirjFqS22jLfTEBH2tPdfs7HqmTTuXnJzfk5WVAezCbr8Rl2s/8A+ee24DzzzzU4LBR9DGyAYMROflrCUQWE0kEohdL1nvlM/nIzv7ZEzzDJS6BLiIOXNeAgYAd9Gnzy+BIHAW2gCdZf3/exq614HAScddlhMBaYPURejpOWCaozMTxCWjrhJNeBftJCORQ5imHagEwoj4LOPyKLffPpVHHnmiReNxbKel45ZM8wyys0+Oy6prS22jLfTEBH1tPdfHHnuIjRvfxW6vwe1ey4ABT6CUjYwMLyL3UlNjA0y0MVLW5gVcQB9Cod1Jf6e8Xi9KHcHhmI7L9QF9+07kqadeRsfUX0Ft7WPASnTGmzKrfD8EonqKEaAEqCInJ35bSKMBaYPUhYgXbDl9+mksWDCr0yirnYXOHqG3VFeJipQmOstq3EmaZgDTzERkK3Ardrufu+8+C1CtCoNqGZ9yHI7pTQJyHY7pKFVxzEg9GSnme+IMCdp+rn6/H5st3woYhagm3JEj09Az2MvRBiA6k/Sh49urEbmp3e0kEVx77VWEw7Pw+1dRW3uAuXP/G3gH+C2wAZgKbMRmOw+t6zwXOIjuXkuBuZjm11CqKr1k1xbiOZbSW/JJDY1xbNK3zqGs9gYcDyMpUaZecyKIxzNaZs6cKxUVFXEd8V6vX/Ly/i12e754PKPE650oDscQsdvHidu9v022V1FRkXg84y3ZGH8TB393BoB2JVp6rs3r2zSXCYyzWGsTLGmmswWWWuSRKQJni2kOksLCwqQl9mseDGu351tBr1oOKDPzkMW0K27EpJwqNtvlAv0FvALni1KjxTQXiNM5JSVSaKQKSLPsUscgRdHZWV07Exs3buzuIrSJ9sYkxesko7TfgQMlpldnGKMtnUCP2O3zJT+/XjyeErHbrxHTHNTqbzVonTnFMCaIYYyOaeG1hx3WE+q/o4i+F253kcAgy+gcsOjgB6x4rwECboGBkpV1tixYsDSpg7vm76bTuVaUOlVMs0JmzvzYUuU4arHrJopSRbFYM5drhNx2293idA4Tj6f1LMEnKloySEp/l0ZHcN5558m6des6dG4gEGDEiHPR0d8N0/hw2IdSl1BUtC6l/Up1dXX07du3u4uREI4nL1Tj5xQIrKamZjPwJCIGUI9S8zHN0+jXb6m1HPh53nrrNwwbNizubz344EOsXr2ZmpqHqa3NRUTrAtvtQzHNPUyfflqMAdgaelL9txehUIhly1bxk5/8jMOHq4GNKJVPNO1ZJHIQOJN+/XLJylJMm3YzkUiE55/fGlsGjfqSEq3Pxoj3bobDlZSWjgX+l379cqmqykT7rnzAZSi1DqWyEDmDe+65gv/3/57s1HxkPR1KqfUicmzOuXhWKr11/gyp8ci7+dbRZZuuDLjbvn17p/9GqkDHKV0rShVYo+A6S0EgbMXMjBGv1y/5+WFxuca3mPmz6XJUJBZsqZeBXDJ//pKER9EnQv2vXbtWlCpolH03uoXEMArkzTffjAWaNl9W1c9if7tV3kUa3k2v1y9OZ6Hk5a0Vu/07AqcJXCdf//p6a7lwnzV7W2ApfxeKwzGkSRBvGvFBWssutZBMGvjxUog7ghPJObtixSKuv/4klMLKY1OBUmJtmrVXXV2Ez7eF8vI9XHLJV7n//qXH1H9T5p8iJycHj8eF2z0al2skM2bcnnAivxOh/k877TRMM4jIDqJ0fM2A3IHdHuTiiy/G4XA0q1ehurqa0tIyDh/uQ1lZhPvvX9Kud8HpdFJdvQefbxTl5V/n8OGrCAZfQmenOY2PPpqH1ts7H/Ci1Cxyc+vIy3uI2bOn079//+RWxAmEtEHqJiSTBn68FOKOoKKiotOu3REkIq7ZUQFOm83GY499D5dLkZd3FI/HhcNhApWIHEDkMDU1IURWIHI7hw+/wQ9+sJbPf/6qJh1hvEGIUgZQHpeN1xpSrf47Aw6Hg3vvnUZW1gI08/EQIlv/f3tnHh9ldS7+7zNJYJawZSaTAAKyI3QRFRdoFVtxbV0qilfBgrhSZREF1x+iVXtrrVvvvd2sW7VVq71drr3XWhVbpVqgxSiLLAoCISGBhGxAZub5/XHOhEmYQCCTmYGc7+fzfmbm3c55n3fe9znnOc95Hrzeedx009VNz0iiXGtqaqmvbwSCqMZQFV566fODeha+//3H2bPny5j0LSswnnQnA/8N3MygQU8AjwBXYrLWfA2Rr3HddV9IqXdfpyRZt8ktHW+yU21fINA46QpJ1JKysrIOOe/B0pbwQKkKwNl8oDumfv9aFZmgJoncUIW5CitUpFZFNqtIsd5yy137OcehO7Jki/w7mr0BbIdrKHSihsMdE/4pTjzJo0hJgtOCiakHQxTm6LHHfkPhFHvPi7WgYECnuR+pAudll30KKc6Bxn72t70jxqLaQrY8gG15wadKCSR7OV5zzY3as+coG9l5kMLJNujmvSpyogaDg5rdt1Q0QlSzR/7p4kDBchsbG3XGjDnq8YQTMgXfpaHQapuhtW3Pwrp16zQYPF7hA4XqhCCv1Qp9FS7SY49dadetVJigffuOcB50B4lTSFmskFqjLS37TPWQNmzY0CHnPRjacu2plM9ehTRUg8HRWlg4RE888XQ1qSeGW4U0X2GVHezuo+HwiUlfhO11QMkG+aebAz0PpnczVAsK3lW//y4bPfxEhaPV5ys+oLNBY2Ojzpo1X0WCCmPsPV2oJqX6WjUpJZbr6aeX2MC5pWqSCO7bE3bsn9YUkhtDymLaMjYUH4uKRmfS2LgZ1VhaQhL17NmzQ857MLQlPFDLfYx8Ing8hRxs6uj4/YC/0qXLMmprL+SDD3Ix6eL/iolftgJ4CliACW1zcGNDbSUb5J9uDvQ8BAIBrr56Cg0NN1Jfv5JY7EJUq4FCGhqUc8+9pFXnhkgkwmmnncvjjy9D9W3gT+wdQ7oT+A5QAIRZvz6Aubc+jOt3f556qm0RNhz7xymkLKWt4WUikQixWJSGhr9RWTmasrLh1NaewNVXH9OhA6zZEJOrpZNAXNlEIqXEPRX37rO1yfuqomIHZWUrqKnZQE1NTZteJPH7AfcTjVYTiWyloeF5TNTnfpgX0zHA94FfAj5EunHxxec2axSkyiMyG+SfTtr6PMybNxOPZxsmoOl64E1E/o7IMhYvhttvX5j0/LffvpDFi0uApxEZiYmXlwvchYnk/R5QA8Q47rhGzP2OYkID7SAnJ9Tp7klH4BRSlhJv2YvkE4msb4pk3DI46IIFD/Kzn60ApqDaHdVc6ut3884773Zo/fr379+h5z8Q8UmHU6ZcQjQ6i+rqdZSXV7Bt22oqKr7N4MH96Nq1a1MPsqbmWurqNgNBYrE9qE6hvn4P48ZNaZNS2LBhA9u311NRcQ6VlVPYtu3LwB5MT+hk4D5MIM2hmACbJeTkbOfBB+9pdp5UeURmWv7ppmVPNxarIxJZj0g+ic9DZWUlgUAfPJ4/I/I4Hk9v66rfB3iEp59+cZ8GSF1dHU899TwiAxDpYyfg5mOUTiEwAPOqvBKYw1/+0gXTQ9oFzKFr16+7OHUpwimkLCCZO7KZC7GB8vLRVFZOZtu249m58z4ikc0kpkN48snnqa8/mvr61zG3sxfQk/fe+5z58xd0WJ0/+eSTDjv3/mjZw3j22ZfwepfT0PAV4HxEJuLzHcfq1T2bgp9eeun5wD+AC4CvYiIz90NkOQ0NbxCLvXVApXDVVTfR2DgcE1TzG8CpwFsYU93bGNPOg5gcPdXAE3TpkttsXlEqgqrGyZT8M0W8pxuJbGbnzvvYtu14KisnU14+mpqaDQSDwab9otFtQE9EijGKAyCKSCEeT3CfnkxZWRk5OYVAFapb7VrBPE8VwA6Muc4D/I2JEx/GpJo4CfiIvLyVh2XE/qwk2cCSW9Lj1LC/Qdo77rhXfb5vNmWqNG6szdNgx4N07o33tVVB7efF6vP1PqLSJNfW1uqMGXM0GLy0yUmhsHCLikxQr/dGLSh4S8PhMrt+k/r9fTQcHqah0Inq8RSq33+XBoP/VI9nmI2woOrxlGs4vG8cucQ02evXr1ePJ6iwxjosDFRYp1BlA2xG7AD3MIULFHpqbu6t+2QIzZRH5JGCeSZGq8gl9v4ZTzef7xvNPCZvueUuFSlWkc0JkR0q1e9fm9SRpaqqSgOBoxRutM/RZhs373OFMxTCNmDqRBtMtVrhPYULFXrozJnznJfdQYLzsss+hdSaO/Itt9xlPcNKm8LLJAtNUltbqwUFA2yQybgyUjt3YrOKhFsNY9NelixZ0iHnTUaid5vHU6giJZqfv1N7945pYWGDwk0KzYOV+v0LVOQsDYU2aXFxVEVKrEKfbd2C4y+qMi0ujjYphdWrV+ttty1Qv7+PejyF6vEMVa+3t0KxwgI10aaHWQ+se+xLa6tCuZ2XMlxzcuZqMLhv2JpUevylU/7ZQlxxmDlC6xX+ribKdvPnorGxUceOnaAiE5qic/v9a7RXr4lJveHiis4EbZ2vJnr3GIUiHTNmvL788suam1uosEIhorNn/8M2QlZoXl74iGr0pYvWFJIz2WWI/ZlvnnrqBVR7kZNT3BReJhTqRVHRSPLz+1FZWQkYr6JvfesbQHeMvRtMzhhFJIxIjw6rfzoTxMXHXaLRXwJDEDmG+vpGampqqar6Lib3zNvEYr8jFvsf6us/or7+p8APyM01YwiBwADgXhoa/ohqBbHY56hW4/f7EPE0hWz62c+e47HHfk9DwzhUS4CV7Nr1JtADWIox0f0vxpOuBHgCI3NzfG7u+USjk9m+fTq1tTU88MAPm8amUhmd43BM0NdezPjQUeTm/ho4C5N36FxUX6GuLp/bb78HMJE1Fi16jblzTyIYvAiv9wx27TqF3buX8eyzLzUbL4w/h/n5fyAQ+DIez+8Q6QaU4fUqX/3qWK677lai0V4Yc3g5jz7aD9hGXl6YgoJBzpkhhTiFlCH257KckxMiFqtoU5y7H/zgfvLyaoBPgEYghkgM1bX4fA0MHDiwQ+qfrgRxiYo7N3cUsB3VCqAHtbXbaGx8CXgUCANBoBeq9wGN+P0hG5oHunXLJxDoCyiq5cB0VLcAEI1uJRabxZQpE3n22RfZtasWeMLGqcuxA+IRTGK4nwJnY16GHwLPEQxW4/XeRm6uEo3+EZFJ+P3jCAQ+aJbIb/369cybN7NdiQfjHK4J+tpDUVERtbUbaGxchcnY+h7G5f5joJpXXnmtaRzOhHu6j6lTJ9GlSx969nyZ/PzFRKPP8ZOfLG8aL9ybwr4v3brdjtc7EahApJhdu/bwyCP/YPv2XxlzEhGgCzffvJaiokJ69YrQUW79nRWnkDJEa8FVI5FSYrEdXHHFxfv1HovTo0cP5s6dgc83D5HVeDzbgVX4fM3jfaWadLXQExW3xxPA57sCmIXqNsyAcy/AaxcBumF6jD3wejcAxh08EokQjW5FpI6CgsUEAl9B5GLq6k6irm4M1147imuumUI0mo9IyCqjOBWYHuiLmJffW8C7GGeGL1BXdxo33jiaXr16UVDwNOHwMrp3v5vc3L6IPMyjj/6YQYOOY+zYyQwffhIAq1f/nffe+yXr1i3h/vvvbnNQ1TidsYcEoCoYj8ZCuyaEaSjkAD2b9Vaqq6v5z//8BdXV69m+fSbl5SOprPw3KiuX8+ijP6a6urpFHLwHaWhYAyxG9U9AHqoPA4MxjizXAZX88IeDqan5tMPn+nVKktnx3JKJMaS9sdH8/kEaDg/Tvn1HqEixHRsZoX7//KSZJ9sa7yuV/Otf/+qwcyfSctwlniRPZJh1LjDOBh5Po3o8UfV4Yirykfp8fbWg4GIr01KFDxUmKBRrILBQi4sbbXqB9zUcHtYU1SEcHtqUZiKe7kCk2pY1WEVKVSSmIjE7uP2ahkJDtKSkJKnDgqmrGctKZRLGdMk/W2hsbNQbbpitIkPVJOmLj9uVqcjOpGGaZsyYoyJnKXyiUKmwyTommPUzZsxR1X3Tixhniel2LGmXjdYwTOELCkG97ro5CgU6a9Z858xwiOCcGrJPISXGNQsEvqgixer3z9dwuEoLCt5Sk5H0Qw0GSzQUKtGiotr9DoCnMx9SOh/EZM4fBQXf0q5dCzU396tW0XykUKawRkUm6M0336Fjx06wDh/HWIeD2xQ2KlyigcDCpB5uyTy5RFZqTs4whREq0mhfUgt0b1rtkE6f/h0Nh4ftk+rcvORKmhwnUhXWqbO9CBOVhgnjU6mwS0UiKrJJRYp05sx5TftXVVWp39/XNkS2Wi/IrfZ/ElK4rqkhUVVVpTfcMFs9nqHWeWh9UwME5ilMssfHFDaq13uOQkhDoSEuE+wh4hRSFiqkOGVlZRoMDtRQaHVTimwTg6tQYbyKDLOeYcNt9OKTM+4ivHLlyrSV1VpAUhNH7iyFW21r9iSFIu3bd4RWVVVpODxUTXy5xQo7rcKKqHHfHqjhcJkWFq7TYHBQU7DSxsbGBC+7sHo8QzUQOEpnz56veXlh+4K7TeNptU1E6A/V5/uGjh07IWnaa+MRmFo373TKP9Mk9pJNj3OSVUpb7f04Q/Py+jWzDJje1DFq4tBVWwW2RyGqcKJtpAStRWGYXnPNjRoKDdFgcJN6vYsVvqTGDbxYjat3POp3hU6atEhhqIZCa1PS2+2MOIWUxQopPj8l/rCZlnnUPmznqMlIqU1zkfz+Phl3Na2pqUl7mfEeYFVVlc6cOc8GwYwHulyvIu+rz/ehFhWN0JKSEg0Gj7VKKqbGHX67wu1qXLaHKhQphNTn+4KGQkOaZWxNnIdUVlamJSUl6vP1VjjfHltqX3YVCqUqUqLB4BCdOXNek+IMh4dpIHCUhsOlKQ98mwn5Z4rE+Vtxk63HM0LhiwpF6vXO1cLCBi0s3NI0bWKv6TVu3otofDoEHKVwkcKHGghU2ykBZ2lOToFVYgMVjrb7DbcNmfKmnlbv3lsUTtbCwnUdHsT4SKU1heScGrKAoqIiVCuor38OeCxhQL0Q49X1e1TrEDEDuHHPsUxSUVGR9jIDgQD9+/fn3HMv4fHHf4FqEONd50OkO37/CHr2/CLQi/r6eqLRHRiHhHJ7hieAdZigmRcBXwHeoaHhdSoqftssqV4gEGDEiBH86le/5UtfOpXx46+gocGPiZEGxoGigngmU9Ug27d7eP75l5kyZSLvvPM069cvY9asa4nFZrfbzbslmZB/pkh0PBDJpXv3uwmFFmFiy/2O3btvpaJiKxUVn1NXdydPP/0i0Au/fwowE3OfPBjX/FmYEE//ARRRX9+IyDHAM0SjeajG7L5FQFdM5I1KjLNMDuDhi18sQ6QSkfx9Qnk52kfm32wOAoEAF198HpBrlQ6oRjC3pw9mDswKoJJAoC/5+f0y/gDk5+dnpFwTBBNgMUYpRDBKIY+Ghl1EIqXU1n7ON785mT17cjABMm/EBNp8HnjI7v9bjIIagnnRjED1KRYvLmkKwLlgwYP85Ccl1NRcyPbtDcBOYBpQhwknU2iXICZ7bD0ezxs8/fQannnmRQKBAAsX3p4SN++WZEr+mSDZ/K1IZC3m3h6N6n+hejaqs2louJiqql1EIuX4/Vfh840AxgOnAKdj7tVRiBRipkj0ADzGXMRu4AsYl/J3MXPOTsE0XuLllbFp0yOoRqmoOJXq6ttQ3e5cv1NFsm6TW9JrslNtPgvd4ylXj6fMmug2q8czQgsLq7S4OJo1JoItW7akvcza2loNhYbY2feqcK8dcN6sxtvqI/V6z1Ofb7SGw1u1uLhRc3JmqclX1M0OUm9VM8P/5AQzTrnCbvt7TNOYUlHRcPX75zeZUU15F9pxhUus2S5qx5IuUeit4fDOpPco1Q4nmZB/Jmk5juj1htXkJ7q1hdPBZoUz9IQTxjeN5/n9d1nT91L1+TZbx4iVTZ6UIjsVXlTjsblF9ybli9jzBRX6KYxUCOuYMfcqrFbjQHOOjh07IdPiOezAmeyymx49ejBr1rUUFNxHQcEewuEQPl8tcDVe7wXk5vYgFtuWNXMfYrFY2sssKyvD4wnZ1m0UkduBUcDXMUFTT0NkKT7fjxDJRySXwsJHELkMiM/biQLDMWaYMoz5JobpbZUB1dTXe1m6dCmNjV1paHgF1esxk2mnYUw5+cAg4DRgLPA1TMu6H9FoaVIzTiAQYNCgQSm7b5mQfybJzc3l/vvvZt26Jbzxxk8JBPwYM9pzwA+BYsx99AL3s27dZ1x++QBExpOf/wZ+/3ICgQvo3n0iPl8dPt+twDZUd6F6BzAD6ImZ1xQPrOrB9IB7YsyDNYDSpcv7wBXAueTkjGDt2o0uF1KKcAopi1i48HamTRsGnE4sNo5u3b7BKadEyM//75Sae1KB3+9Pe5lFRUWI7MDrrQGqERE8nruBPwDbGTVqCLt3R6mquqUpOvrOnZtRfQP4EeYlMgeot99nYiJcAKzGTHw8k4aGUi644Eq2by9FdTtwLUbpnYh5OQFMxpgNHwfet/tUkZPTO2lEjVSTCflnA4FAAL/fT05OGKM4QhhT2jZMg+JhYDLV1V144YVXmTJlIn/96zOUl39CWdkq3nvvl2zZsoI5c07E7z8H1cHAKuAvmHQS6zCNlpj9XIuJ3v4uZoJsDuXluRjz7UVEIpuorW3MuAn9SMEppCwhEomwYMGDPPfcy3g8vYhGy5gyZSKLFr3G+vVL2zWrvyPYvn172suMjyX4fHfi9e4AKlH9GJEZ9O0borR0AKpvAn9FdRH19R9TX/9dTOqAQkTuBEZixhJew7yETsP0rr6OCUXzawAaG/OBL2NC06zAhAn6CvA6xrFhDtCASUOwBbiJvLxLgPq09GIzIf9swTRMqvH5LsI4LDRiInb8DFgDvInqO4i8w1NPfcJjj/0Y2NtL7dGjB/fffzdLlvyZnJw9GCVWhGlkzMM0TiqAlZhGy6WYpIt5wFKGDXsYE61jA3A0u3bt7FRjeh1KMjueW9IzhpQ4rmAm/l3aFJ16fzP60zkBtjXq6+szUm7iWEI4fLKGQkN11qz5Wlg4RIPB9zUQKFWPp9JOaC217rtBhQ9t5IWomtQRr9mxoPPVpBKoVrhF4Ww7xjRMTSTvSrstpntTTBSqyHA1EyyHKgQ1Ly+k4fDJTXOkOnqyZKbkny2Y5+USzc0dr2Zi9Af2Xnze5Irv8ZQplKhIoRYW7p3E2tjYqLfccpd26VKoMMD+H0oV6tVEcI9PCzhaobcdLxqsZlJtTEOhOk1MOeL3j8r4vMDDDY7UeUjAzRibTSkm7PI9B3n8hcA/Mf31DZicxTltOfZQFVLLPEiFhUM1Ly/czKEhP3+nhsOlWlQ0QsvKyprm38SPC4dP1GBwYLO5M+nk448/TnuZiSTOSZoxY45NFWEmD+fl3amwQc0E1qBVIsUK81Vkt5qcRhPsy2aLdUyosS+iz61COilhYLtMzZyjiF0/XEOh1RoKlWjPnv10/fr1aW8kZFr+mSb+DIVCQ2zDoLtVImVqJkFvs4ppj71nr6nXe57OmXO7nnLK1+297q9mzlF/NSlMVtn/wVqrjNbYc7+iJh2Fmc80efJHCf+NfUMWOQ5Mawop87af9nMNxqD738D1B3OgiJwFvAI8iVFso4EHMKOl81NaywTi6RQ8nkXk5BRRXf0WjY0zMFlMuwMx6uurgQCqeYwceTK5ucXU1GwgFhuNx3MBu3b9Dgjz8MM/57333mfRotfSasobMWJE2spKRtz8cued9/Hii5tRfRORY1CtIBKZRW7udCIRL8a0UoQZX7gZ1aMxJp5GzHhQAXsdGgow5rgIsN2u6223xzBmnEpgB3V1P8bv38TVV3873rBh0KBB6br8jMs/W1BVRHphxvp2Yly3vZh7GMTcrypgOLt2fY9HHjkNc++Pxzii/B97A+e+hHFY8QLnA7V23xswbd1tgIcXXhhi05xvBTYybVrHBTHudCTTUofTAnjsZy4H2UPC9IwWtVj3/4A9QPGBjj+UHtK+wULjJqShaqIONKpI1AZ4LFGRYi0sXNcUFw1mKlya4LK6WUUmJE081pEsXbo0reUlI1GWJpFhpZXbOjUuwStsCzmiJrvrCoWBmpOzUv3+NWqygd5izXHVCSafUjUxzC7RvQn44q7dIxXGKXxd+/YdoeHwvtl+00E2yD+TxOMbmozB8Rh131Q41j5H8fh1l6qJzhF38R+jMFbhNN3rLh5VE3h1gsJ1CmfaHnUf+x/50P4fLlZYoTNn/k1FPlKRCTp27AQXy+4Q4Eg12TVdyEEqJKCf3f+aFusH2vXTDnSOQ1FILdNY+/1V1sywUE1ctk26d27LBPV6r7cpudfZ+HbDFTarxxNLiEb9kYZCQzud2aC5LGNN2XXhfatcdtmXUFT3ho85SWGp5uVtsy+uIjXjD2UKs+3LaIVCnZpYZkVqxg/C9gU1V2G4er2zVGSCFhZuSWkUb8eBadmoCwSqrWLZZO9RSPdm9p2f8D+IjwEusvtssevjceo+UhiixlQ3WE0sydV2W53uDag7WAsKBmfMXH4k0JpC6sxedqPs50eJK1X1U4xf8MiOKDQxDIpqjF27dmH031RMBtKvY7y5TgWW0L379wDweIowJoOeGBNUnCgihXg8wbS6nmZDgrjmOaWEbt26UVgYtFsrMWY3MOY2D0Z+O4CjaWyM4PEcg5HnOZh8N38AlmHMNeMxJpyrMZ53LwErEPk+Hk8vdu/+PfCInRO1N9vvk0++kJY5Kdkg/0zRMrll9+7dyMvLw5ja+gB+jPluBDAF6MLesEEX2f2M5+VeYhjTXQjzPPbCzG3qYbf7gHuAJcyefRm//OUTPPTQfVnh8Xok0ZkVUoH93JFk246E7c0QkWtFZImILCktLaWiooLS0lI2b97Mjh07WLduHQ0NDaxYsYJYLMayZcuAvS+Q1atXM336FVx44S/o1m0D555bxtCh5Ywb9xBjxsxk1Kg3OPPMB+jd+0tMnvwtunat49/+bTkeT4C5c+8CNjB79nsATJv2Id27b2PixPX07duVaDRKeXk55eXlbNy4kZ07d7JmzRp2795NSUlJs3rEP5cvX04kEmHVqlXU1tby2Weftemajj/++KZzLFu2jFgsxooVK2hoaGDdunXs2LGDzZs3E5fRZ599Rm1tLatWrSISibB8+fKk9SkpKWH37t2sWbOGnTt3snHjxlavaf369UyffgVXXfVrotEypk5dSjS6leuvfwOv18ukST+nd+8NnHnm54wc+Rljxvw748ZdzbBhUc47r4yCgk1MmXI2gcB0Zs6cADQye/YNwDvMnPkgHk8vJk8+n1BoBOed14uhQ3czbtxKTjihiJEjR3PmmTGKi+s577xVdO0aYfLkrUAvlixZcsjX1Nb7FAwGD/q/l6n7lOr/XlFREdOmTSAaLePKK5fh8SjTp2/lqKPKOe+8QQwdOoBx48YzZkwXRo68hjPPvIHevScyadKpeL0zuO66WqCC2bMXAzB79lJgJ1dd9Qnduzdy0UWVDBjg4/TTR3LssRs59thyTj/9cwYMqOaiiz7hqaeeJxgMpvSajsT7tL9rapVk3aZMLcAZmObJgZa3kxx7sCa7K+z+w5Ns2ww8eaBztNfLLhwerh7PUBUZpnl5E1RkuHo8p6jIMPX7++jNN9/RLJ1BYeEmzc0doHCGDZ9Tpn7/Wg0G028qypYxjJYhZcLh4er391Gvd67CaGuiOUWhr5qUAyvV42lU+FBFLtFA4N6m3EVdu15lTXOfWzPOPbp3HKlUYaOKTFKfb47NXbU25VG820q2yD9TJMuRFQpN0pNO+pr27HmOer2z1HhRdlf4ihrPySprjjvHmt7iebRKFT629/pWNeNOC6zJ9gxrCozZ/8E5et99D2b68g97aMVkJ2ZbdiAifqB/G3atV9WNLY7NxbjELFTVe9pQ1jmY2ZFjVXVxi211wH+q6q37O8cJJ5yg8dbwoVBXV8ett97FSy99Tk7OfyCSTyTyMfB9rrvuyyxceDsLFjzIk0++gDEh7GDatEns2dPIs8++jMcTRKSK6dMvZ+HC29NqPojFYng82dPBrquro6ysjKKiIh544If85CclNDQMor7+VYyJpgyPpwATzTmH3Nzt5Ob2IT//D+Tm9iUaLSMavQmv90M2b+4HPIKR+Q8wJrt8YAd+fw/y8/MYMqQ/q1cXkJPzGDk5RU1RvK+9dhT33393h19vtsk/3cQnkic+G9OnX87dd9/Kffc9xJNPvoBqd6qqPqWxsSeqdZjU9hHgaCBumd+NMdtWYf4nAeByYCI5OXOJxT5A1YPx2NvOKaeM5o03ftdpI2WkChFZqqon7LMhmZY6HBcOvofU3+5/dYv1R9OBTg0taS35XOJgabI5LpmeHJvN82CaT549UX2+YvX5ijUcPlnD4WF6ww2ztaKiIqncGxoa9Oab71Cfr4+KDFGRsPp8xXr99TN18+bNTTJvy33rSLJZ/umktecgcZ7abbfdY3NZhdQE2h2sZn5aNz3mmNH6/PPP60UXXaZdugQVCpuSMt522z1aVVWl77//vr722mtNSRyd7NsPh0MPqT0cbA/JHvMvYIeqnp6w7i6M63d/Vd26v+Pb20NKJLGFfzjMaWhoaMDn82W6GvslUaZAUvm2Jve6ujo+/fRTAAYOHNjqPcnUfTsc5J9NxO9nZWUlW7Zswev1Mm7cOMLh8D77wP7vuZN9+2mth3TYKyQROQHTq/FgZre9jHGJAnhNVevtfn8BBqjqkIRjzwX+iAmC9SvMxNgHgSf0AOY6SK1COtxYt24dgwcPznQ1Oi1O/pnDyb79tKaQjgSfxRuBbyf8vsQuYOYUfWa/x7O1NaGqr4nIRGABxu+6DBOp4f6Oq+6RQUFBUidER5pw8s8cTvYdx2E/KqqqU1VVWlk+S9hvvJq4MS2Pf1VVv6yqXVW1v6req6rRdF7D4Uh9fX2mq9CpcfLPHE72Hcdhr5AcmaEze3hlA07+mcPJvuNwknUcEmZmvCNTOPlnDif7juOwd2rIJCKyDZOyojMSwoS/dmQGJ//M4WTffgaoamHLlU4hOQ4JEVmSzEvGkR6c/DOHk33H4Ux2DofD4cgKnEJyOBwOR1bgFJLjUPlppivQyXHyzxxO9h2EG0NyOBwOR1bgekgOh8PhyAqcQnI4HA5HVuAUkqMZItJPRH4jItUislNEXhWRtuSoQkQeEJHXRaRSRFREpnZwdY8oDlX2InKCiPxURFaJSL2IbBSR50VkYDrqfSTQDtkPEJHficgGEWkQkQoRedvmW3McJE4hOZqwCRLfBEZgAtZOAYYCb4lIW3Ir3AT4MBHUHQdBO2V/GTAKeBw4B7gNOA5YIiL9OqzSRwjtlH0+ZpLsXcC5wHSgFnhNRL7VYZU+UkmWJMktnXMBZgFRYEjCuoGYNJs3t+F4j/0cgklyODXT13S4LO2RPVCYZN0AIAbcm+lry/alvf/7JOfLBT4H/pDpazvcFtdDciRyPvB3VV0bX6GqnwLvAhcc6GA1+cEdh8Yhy15VtyVZtwHYBvRNcT2PRNr1v2+JqkaAakzCUMdB4BSSI5FRwEdJ1n8MjExzXTobKZW9iBwDhIGV7axXZ6DdshcRj4jkikixiNwNDAP+I4V17BQcCQn6HKmjANiRZP12oFea69LZSJnsRSQX+DGmh/Rk+6t2xJMK2X8fmGu/1wKXqepfUlC3ToXrITlakmymtKS9Fp2TVMn+R8BYYLKqJnvROvalvbJ/FBgDfBP4E/CCiHwjBfXqVLgekiORHZjWYkt6kbwF6UgdKZG9iDwIXAt8W1VfT1HdjnTaLXtV3QRssj//KCJvAz/AeZweFK6H5EjkY4w9vSUjgRVprktno92yF5E7MS7fs1T1uRTW7UinI/73SzDepo6DwCkkRyK/B04WkUHxFSJyNDDObnN0HO2SvYjMBL4L3KmqT3RUJY9QUvq/FxEP8BVgXaoq2FlwwVUdTdhJgMuBBsxEPwXuA7oBX1LVWrvfAMzDdq+q3ptw/GlAIVAMPIHxMnobQFV/k7YLOQxpj+xF5DLgBeD/gIUtTr1TVV3vdj+0U/b3YMx97wJbMf/96cAZwOWq+uu0XsxhjhtDcjShqnUi8jXgEeA5zKDuX4DZ8YfSIkAO+/awFwKnJfz+jl3ixzhaoZ2yP9uuP9suiSwCxndQtY8I2in7ZcBsTLSMHhiltBz4qqq+2/G1P7JwPSSHw+FwZAVuDMnhcDgcWYFTSA6Hw+HICpxCcjgcDkdW4BSSw+FwOLICp5AcDofDkRU4heRwOByOrMApJIfD4XBkBU4hORyOToGIXCoitXapFxFN+F0rIldnuo6dHTcx1uFwdDpEZCLwY1UNZboujr24HpKjUyAi422LeGqm65Iu2nvNIjLVHj8+HeWlmdGYsD+OLMIpJEdGEZFeIrLLvsgmt/Ncx4rIPTZSs+MIQUS+av8fdyTZNtpuUxskteX2F0UkKiItU0EcB/yzo+rsODScQnJkmiuALsCnmCjJ7eFYYAFwdJJt7wA+TPDMzsKRcs1V9rNHkm1zE7432y4i/YFvAb9X1bUtjnM9pCzEKSRHppkOvIVJAX2aiAzuiEJUNaaqu1Q12hHnzyZEJEdE/EfQNVfZz5YKpy9wKfBhsu3ATZiMBg+3OK4PUIRTSFmHU0iOjCEix2F6Nc8AzwONwLRW9u0iIvNE5F/WQ6paRJaIyI12+z3AU3b3txLMOE/b7c3GN0TkHPt7ZivlLRaRbSKSZ393FZE7RORja2KsEpE/iMjoNlznwZbVTUS+KyLvi0iFiOwWkbUi8j0R8bc4Nj7Oc4aI3C0i64BdwKXJxnQO5twJ5FpT6Aa7/4c2B1ObaI/sLFX2M5nCUeCBlttFJB+4GvhAVf/W4rjjgBqgZa8Je53N/jsJ295O2Da1jXV3HAQuH5Ijk0wH6oBXbE6a/wG+LSL/T1Vj8Z1EpAsm+dx44HXgl5iX7hcxJpkfAa8CvYFrMS+olfbw1rJ2vg6UAlcCjyduEJGhwMnA46raaBXF/wJjMeavH2FeftcA74rIqaq6ZD/X2eay7Oq+mJfpK5jEexFMnql5GFPTWUnK+AGQB/wM2AmsBrom2e9Qzv3vQAD4L4wCmAb8SkS8qvr0fq6bFMgOVa0RkQjNFU4Ac69/BayyqxMV1jSgJ/DDJKc8DviXOhfj7ENV3eKWtC+AF9gOPJ2w7gLMC++cFvvOs+sfSHIeT8L3qXa/8Un2G2+3TU1Y95BdN7LFvvfZ9cfZ33Ps77Na7Ncd2Ai83YbrbVNZdl0XIC/JOeL7npjkmlcD/jZc86GcewPQI2F9D7tuO+A7QHntlp3dvxJ4N+F3vHf0RcyYoQKT4v8JTO/nMyAnybl+CzzaSjn32HNp4n/Tbns7YdvUttTbLQe3OJOdI1N8C+iFMdfF+R+gHLiqxb5XADuAe1usRxN6UodAvOwr4ytERIDJwEeqGh9jmIxphS8VkVB8wbzc/wx8RUR8KSoLVd2jtrckIrnWEzEEvGF3OSnJ+f9LVesPdMHtOHd1wjmqgR9j7t/4AxSZCtmBMdt1t/X2ALOA/1PVEkyPEPb2kM4HBgOPaZLxM1W9SFVnt6FMR5pxJjtHppgObAM2tXDJ/TNwiYiEVLXCrhuKMbHsSmUFVPUjEfkncIWI3GGV26mYFvetCbseg/FW27af04WAz1NQFgAiMgO4HhjFvmO9vZIU8cl+6tbec69Msm6F/Rx0gOLaLTtLFVBov1+AUTjX299xZRlXSHMwSurnBzinI8twCsmRdkRkIHA6ILT+Ip2M8byL01H2/mdsOV/D9BKuBKIYJ4s4ApQAN+/nPPt74R5MWYjIzRjPsNcxY05bgD2Y8Z+nSe6MdMDeUTvOnUz20pbySJ3sqoB4w2UusFxV3wBQ1aiI1AM9rKPMqcDDqlrTxjq2lbZes+MQcQrJkQmmYR7ua9jrQZXIdzE9qEft70+AY0Skq6ru3s95D0VpvYAZ37lSRN4FJgJ/VtXShH3WYFrnb7bTRNiWsgCmYMY/ztHmzh1nt6Ps9px7JPD7FuuOsZ/rD1BeqmRXBXQTkZOAcSSYPi07MT2kORhHjZbOI98Bvg18Cfi7qo5vQ5n9W/zul3jKtlbc0XbcGJIjrVj7/1SgRFV/rqq/ablgPKe+ICJj7GHPY0xJdyU5X+KLodZ+FrS1Pqq6DfgTZkzrCsw4xTMtdnsWKKaVVr6IFKWwLDC9JiXhpSciucBtbSnnABzKuW8QkUQPtx4Yc1kVsOgA5aVEdrYswTgdbAJ+3WJ7NUZxTgJeVtWNLbaXAt8DHmljeQDjReROEZkgIo8DAxO2nSkixx/EuRxtwPWQHOnmTExL88n97PMK5sUzHfgH8BjwTeAuq6Rex7h9jwKGA2fY4/4BxIA7RaQXxqX8U1V9/wB1egYzEP4w5sX2uxbbHwMmAA+JyNeANzEt8v7A121dTj9AGW0tC+A3wIPAn0TkVYziuhwzT6u9HMq5K4D3ReQXGKUwDXPtV7fBkSJVsquyn2cD83Svi3ycnRhTKCRx9VbVV6EpekNbEUxvPbEOPez6y4DdmMaVI0U4heRIN/HwQK+2toN1APgEuExE5qhqg4iciRk7uBwzz2gXxhz0VMJxG0XkKmA+Zs5MHkYBHEgh/RHjwlwA/FxVG1rUp1FEzgNmYExeC+2mLcAHJO/lHFJZlocwL73pmBf6VuBFzLWuSLL/wXAo554PfBW4ERPhYA1whaq+cKDCUii7HfazBvhpku1xx4Z39ADzmg6CvwJ+TMPnY+A6TINqPqbh81GKynFYXPoJh8PRaRCR2cCFrY0hiYn4scD+fEZVp6alYg7AjSE5HA6HI0twCsnhcDgcWYEbQ3I4HEc81pMwvnhExAvEVHVPZmvmSMSNITkcjiOeFmNDcRa1cT6SI004heRwOByOrMCNITkcDocjK3AKyeFwOBxZgVNIDofD4cgKnEJyOBwOR1bgFJLD4XA4sgKnkBwOh8ORFTiF5HA4HI6swCkkh8PhcGQF/x/uibd8vg5fLQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -511,7 +511,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEQCAYAAAC0v9O7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAteklEQVR4nO2de3hcVbnwf2+a0PRG00t6p6fFtkBLbaFFrsIpoigHQQWUi3KQBwSE73DxioAcUDwCIh7Qg3DOUeT+oaIHEZAqAh9329gQmhOahqahaZqQNmlIm6ZNZ31/rJl2Mp0kM8msvWf2en/Ps589s/eevd5fdpJ31l57rSXGGBRFURQlQVHYASiKoij5hSYGRVEUpReaGBRFUZReaGJQFEVReqGJQVEURelFcdgBZMPEiRPNrFmzwg5DURSloFi5cmWrMaY80+MLKjHMmjWLFStWDOqzdXV1fOhDH8pxRPmNOvuBOvvBUJxFZH02x3tzK2n8+PFhhxA46uwH6uwHQTp7kxi2b98edgiBo85+oM5+EKSzN4mhqMgb1T2osx+osx8E6ezNT7ekpCTsEAJHnf1Anf0gSGdvEkNnZ2fYIQSOOvuBOvtBkM7eJIaJEyeGHULgqLMfqLMfBOnsTWLYsGFD2CEEjjr7gTr7QZDOXiSG996Dhx6ax9q1YUcSLHPmzAk7hMBRZz9QZ7d4kRg2b4ZbbinirbfCjiRYVq9eHXYIgaPOfqDObvEiMUyZYtebNoUbR9AsWrQo7BACR539QJ3d4kViKC+HoiJDU1PYkQTLypUrww4hcNTZD9TZLVJIU3suXbrUDHaspKlT4dRT4T//M8dBKYqi5DkistIYszTT472oMQCMHbtdawweoM5+oM5u8abGcMop0NICg/y4oihKwaI1hj4oLd3iXY2hqqoq7BACR539QJ3d4k1imDt3f5qbIRYLO5LgmDdvXtghBI46+4E6u8WbxDB8+BZ274bW1rAjCY6GhoawQwgcdfYDdXaLN4lhzpzRgF99GSZPnhx2CIGjzn6gzm7xJjGMGtUB4FU7Q3t7e9ghBI46+4E6u8WbxHDAAXYsc59qDKWlpWGHEDjq7Afq7BZvEkN5+W7ArxqDoijKYPAmMQwbtoMxY/yqMezYsSPsEAJHnf1And3iTWIoKytj6lS/EkNZWVnYIQSOOvuBOrvFm8TQ3NzMlCl+3Upqbm4OO4TAUWc/UGe3BJoYROQFETF9LM+6LHvmzJlMmeJXjWHmzJlhhxA46uwH6uyWoGsMXwWOTlmuie970mXBa9asYepUv2oMa9asCTuEwFFnP1BntxQHVhJgjKlO3SYiFwM7gcdclr1w4UKmTIEPPoBt22DUKJel5QcLFy4MO4TAUWc/UGe3hNrGICIjgLOAPxhjtrgsa+XKlUydal/7cjtJhyb2A3X2gyCdw258/hwwBviV64KWLFni3RSfS5YsCTuEwFFnP1Bnt4SdGM4HWoBn+jpARL4iIitEZEVTUxOtra00NTXR2NhIW1sbdXV1dHV1UV1dTSwWo6KiAtibXSsqKojFYjz//POMG2efA66t7aSxsZHE+err6+ns7KSmpoaenh4qKyt7nSOxrqqqoru7m9raWjo6OmhoaKClpYWWlhYaGhro6OigtraW7u7uPUPkpp6jsrKSnp4eampq6OzspL6+ftBO1dXVdHV1UVdXR1tb2z5Or7/+euScBrpOK1eujJzTQNfppZdeipzTQNdp+fLlkXMa6Dq9/PLLg3bKltAm6hGRacB7wL8bY64Z6HgY2kQ9YCfqmTwZ7r4brrhi0KdRFEUpKAppop4vxst3fhsJbBaeOBGGDfPnyaTEtxqfUGc/UGe3hJkYzgcqjTGB2C5YsICiIltj8KWNYcGCBWGHEDjq7Afq7JZQEoOILAUWEFBtAWDt2rUAXg2LkXD2CXX2A3V2S1g1hvOBHuCRoAqcMWMGgFfDYiScfUKd/UCd3RJ4YhCREuAc4FljTGCDf7TG5/T0qcbQ6tM8pnHU2Q/U2S2B9nwGMMbsAsqDLnf0aDu155Qp0NwMu3fbhugok3D2CXX2A3V2S9j9GAJj165dgK0xxGLgwxeOhLNPqLMfqLNbvEkMsVgMYE/vZx/aGRLOPqHOfqDObvEmMYwcORLAq2ExEs4+oc5+oM5u8SYxbNlix+jzKTEknH1Cnf1And3iTWKYNm0aAOXxZu/33w8xmIBIOPuEOvuBOrvFm8Swbt06AEaPhtJSPxJDwtkn1NkP1Nkt3iSGgw8+GAARmDTJDqgXdRLOPqHOfqDObvEmMaxatWrP6/JyP2oMyc6+oM5+oM5uCW3Y7cEw1GG3E5xyik0Mf/tbDoJSFEXJcwpp2O1ASZ4Wr7zcj1tJOv2hH6izHwTp7GWN4RvfgJ/9DLZts20OiqIoUUZrDH2QmPoObI2hq8smhiiT7OwL6uwH6uwWbxLD4sWL97yeNMmuo94AnezsC+rsB+rsFm8SQ01NzZ7XiU5uUW9nSHb2BXX2A3V2izeJYfbs2Xte+1JjSHb2BXX2A3V2izeJYePGjXte+1JjSHb2BXX2A3V2izeJYfz48Xte+zJeUrKzL6izH6izW7xJDNu3b9/zetQoGDky+jWGZGdfUGc/UGe3eJMYiop6q06aFP0aQ6qzD6izH6iz47ICKylkSkpKer33ofdzqrMPqLMfqLNbvEkMnZ2dvd77UGNIdfYBdfYDdXaLN4lh4sSJvd77UGNIdfYBdfYDdXaLN4lhw4YNvd4nagwFNFRU1qQ6+4A6+4E6u8WbxDBnzpxe78vLobsbPvggpIACINXZB9TZD9TZLd4khtWrV/d670Pv51RnH1BnP1Bnt3iTGBYtWtTrvQ+9n1OdfUCd/UCd3RJKYhCRU0TkJRHpFJEOEVkhIie6LDN1kgsfagw6mYkfqLMfBOkceGIQkUuA/wFWAp8FzgJ+DYx0We6SJUt6vfehxpDq7APq7Afq7JZAE4OIzAJ+AnzDGHO1MWa5MeZPxphbjTFPuSw7Ndv6MF6SfqvyA3X2g8hO7SkiNwNfAyYYY3Zk+/lcTe2ZYMwYuOgiuPPOnJ1SURQl78j3qT2PA2qAs0WkTkR6RGStiFzuuuCqqqp9tkW993M656ijzn6gzm4JOjFMA+YCtwM/BD4BLAd+KiJXpvuAiHwl3ji9oqmpidbWVpqammhsbKStrY26ujq6urqorq4mFovtmRc1Ue2qqKggFothjKGrq4u6ujra2tpobGykrGwnjY07qa+vp7Ozk5qaGnp6eqisrOx1jsS6qqqK7u5uamtr6ejooKGhgZaWFlpaWmhoaKCjo4Pa2lq6u7v3XMTUc1RWVtLT00NNTQ2dnZ3U19cP2qm6unofp8TPqL6+nunTp0fOaaDrNG/evMg5DXSdRo0aFTmnga5TV1dX5JwGuk5lZWWDdsqWoG8lrcEmhjOMMU8kbX8GOAyYavoJaCi3kmpra5k7d26vbaedBu+9B3//+6BOmfekc4466uwH6pwd+X4raXN8vTxl+3PAZGCqq4InT568z7aoj5eUzjnqqLMfqLNbgk4MfXXdk/g65qrg9vb2fbZFfbykdM5RR539QJ3dEnRi+F18fXLK9pOBDcaYTa4KLi0t3WdbeTns2gVbt7oqNVzSOUcddfYDdXZLcWAlWZ4G/grcKyITgXeBM7GN0F8OOJZevZ/LyoIuXVEUJT8JtMYQb1j+DPAYcBPwFHAUcJ4x5n6XZe/YsW+3iaj3fk7nHHXU2Q/U2S1B1xgwxnQAl8eXwChLUyVI1BiimhjSOUcddfYDdXaLN6OrNjc377MtkRjS7IoE6Zyjjjr7gTq7xZvEMHPmzH22TZkCw4ZBY2MIAQVAOueoo85+oM5u8SYxrFmzZp9tw4bZ5BDVWQLTOUcddfYDdXZLoD2fh0quB9EDOOoo2H9/eO65nJ5WURQlb8j3ns+h0deQtTNmRLfGoEMT+4E6+0Fkh90eKi5qDFddBb/4BXR05PS0iqIoeYPWGPqgr2w7fTp88EE0E4N+q/IDdfYDrTH0gYsaw6OPwrnnQnU1HHJITk+tKIqSF2iNoQ8S46enMmOGXUexnaEv5yijzn6gzm7xJjEsWLAg7fYoJ4a+nKOMOvuBOrvFm8Swdu3atNunTbPrKCaGvpyjjDr7gTq7xZvEMCNRNUhh+HA7mF4Uez/35Rxl1NkP1Nkt3iSG1tbWPvdFtS9Df85RRZ39QJ3d4k1iGD16dJ/7opoY+nOOKursB+rsFm8Sw65du/rcF9XE0J9zVFFnP1Bnt3iTGGKxvqeTnj4dNm+Grq4AAwqA/pyjijr7gTq7xZvEMHLkyD73Jdp0Nm4MKJiA6M85qqizH6izW3KSGERkQi7O45ItW7b0uS+qfRn6c44q6uwH6uyWrBKDiFwsIt9Ier9QRDYALSKyQkSm5DzCHDEt0WEhDVFNDP05RxV19gN1dku2NYb/AyTfif8x0A5cBYwFbs5JVA5Yt25dn/umT7frqCWG/pyjijr7gTq7pTjL42cCNQAiMhY4AfiMMeZpEdkM/FuO48sZBx98cJ/7Ro+GsWOj18mtP+eoos5+oM5uybbGMAxINI0fBxjghfj794BJuQkr96xatarf/VF8ZHUg5yiizn6gzm7JNjHUAv8Uf3028KoxZnv8/TQgb1uEDj/88H73RzExDOQcRdTZD9TZLdkmhh8BV4lIK3AucHfSvmXAW7kKLNcMNMnF9OnRSww6mYkfqLMfBOmcVRuDMeYREWkAjgT+Zox5KWl3M/BkLoPLJUuWLOl3/4wZsGkT7NoFJSUBBeWYgZyjiDr7gTq7Jet+DMaYl40xd6QkBYwxNxpjns5daLmloqKi3/0zZoAxNjlEhYGco4g6+4E6uyXbfgzHiMipSe8niMijIlIlIj8SkWG5DzE3LF68uN/9UezLMJBzFFFnP1Bnt2RbY/ghkFyfuR04BVgDXAZ8p78Pi8g/iohJs7RnGUfW1NTU9Ls/in0ZBnKOIursB+rslmwTwyHACgARKQHOBK42xpwBXIdtkM6EfwGOTlpOyjKOrJk9e3a/+2fOtOsoTQw1kHMUUWc/UGe3ZJsYRgMd8dcfAUYBT8XfV2A7wGXC/xpjXk9aVmQZR9ZsHGCEvLIymD8fXnzRdSTBMZBzFFFnP1Bnt2SbGBqBRfHXnwLeNsa0xN+PA7an/VQeMH78+AGPWbYMXn7ZPpkUBTJxjhrq7Afq7JZsE8OjwA9E5DfANcBDSfsOx3aAy4SHRWS3iGwWkUdEJNOaxqDZvn3gnLVsGWzbBiuc11+CIRPnqKHOfqDObsk2MfwrcCswHNsQfWfSvkXArwf4/FbgDuAi4ETge9j2hddEJO1wGiLylfjIrSuamppobW2lqamJxsZG2traqKuro6uri+rqamKx2J5HuhKdQSoqKojFYjQ2NtLV1UVdXR1tbW00NjaSOF99fT2dnZ1Mm2bz2iOPNPU6R2JdVVVFd3c3tbW1dHR00NDQQEtLCy0tLTQ0NNDR0UFtbS3d3d1UVVWlPUdlZSU9PT3U1NTQ2dlJfX39oJ2qq6v7ddq5cyc1NTX09PRQWVkZCafOzs5+nYqKiiLnNNB12rx5c+ScBrpOiQHlouQ00HXaunXroJ2yRYwxWX8ol4jI4cCbwA+NMdf3d+zSpUvNikF+nW9tbWXixIkDHvfhD8PkybB8+aCKySsydY4S6uwH6pwdIrLSGLM00+MHNVGPiBwqIpeLyA0i8lUROXQw5wEwxlRgH3c9YrDnyITOzs6Mjlu2DF55BXbudBlNMGTqHCXU2Q/U2S3ZdnArFpGHgErsOEk3AT8FKkXkwSF0cBPsSK3OyDTTLltm535+802X0QSDb9+oQJ19QZ3dkm2N4Ubg88B3gdnAiPj6u8AX4uusEJGlwDzgjWw/mw0bMuy5dvzxIAJ//avLaIIhU+cooc5+oM5uyaqNQUTWAb8wxnwvzb7vAl82xvTZC0NEHgbWYfs8tAOHAddiH3M93BjT2l/5Q2lj6Onpobg4szEDDzsMxo2D558fVFF5QzbOUUGd/UCds8N1G8M04LU+9r0a398fbwOnAb8E/oSdEvQJ4MiBksJQWb16dcbHLlsGr70GO3Y4DCgAsnGOCursB+rslsHUGO43xtyUZt+ANYahMpQaQzY8+SScfjq88AKccILz4hRFUZziusbwMHBd/GmkA0VkhIjMFpFrsWMlPZjl+QIjm0kujj8ehg2DRx91GFAA6GQmfqDOfhCkc7Y1hmLgAey0nskfFOAR4J+NMbtzGmESQdUYAK64Au65B1atgoULAylSURTFCU5rDMaYHmPMucBC4ArsU0hXAIcC9wN/z+Z8QZJttr3pJhg7Fq6+2k7gU4jotyo/UGc/yNsaQ78nEjkDeNwY42yyniBrDAB33QVXXgm//71tc1AURSlEAun5XIgkxiXJhssug0MOga99Dbq7HQTlmME4Fzrq7Afq7BZvEsO8efOy/kxJCfz4x1BXBz/7mYOgHDMY50JHnf1And3iTWJoaGgY1Oc++Uk46SS49VYotJF+B+tcyKizH6izWwbsRiciB2Z4rilDjMUpkydPHvRnb7wRPvpR+PnP4ZprchiUY4biXKiosx+os1syqTGsxU7AM9Byt6MYc0J7e/ugP3vccXDiiXDbbYVVaxiKc6Gizn6gzm7JZOCNLzuPIgBKS0uH9Pkbb7S9oO+91z7CWggM1bkQUWc/UGe3DJgYjDG/CiKQfOf44+0YSrfdBpdeCiNGhB2RoiiKG7xpfN6RgxHxbrwRNm2ytYZCIBfOhYY6+4E6u8WbxFBWVjbkc5xwgm1ruOUW6OgYekyuyYVzoaHOfqDObvEmMTQ3N+fkPD/8IbS2wh135OR0TsmVcyGhzn6gzm7xJjHMnDkzJ+c54gj4/OdtYti0KSendEaunAsJdfYDdXaLN4lhzZo1OTvXLbfYITJuvjlnp3RCLp0LBXX2A3V2S84G0QuCoAfR648rrrAd3qqrwcPe+YqiFBA6iF4f5HrI2htugNJS+Pa3c3ranKJDE/uBOvtBQQ67HQT5VGMAe0vp+uvhL3+xTyspiqLkI1pj6AMX2fZrX4NZs+ycDT09OT/9kNFvVX6gzn6gNYY+yLcaA8ATT8AZZ9hhub/61bCjURRF2RetMfRBZWWlk/N+9rP2NtINN8CWLU6KGDSunPMZdfYDdXaLNzWGnp4eioszGTMwe6qqYPFiuPxyOx1ovuDSOV9RZz9Q5+zQGkMfrF271tm5Fy6Eiy+2j6+++66zYrLGpXO+os5+oM5u8SYxzJgxw+n5v/tdKC62t5TyBdfO+Yg6+4E6u8WbxNDa2ur0/NOmwVVXwSOPwKpVTovKGNfO+Yg6+4E6uyX0xCAiz4qIEZHvuyxn9OjRLk8PwDe/CePGwbXXOi8qI4JwzjfU2Q/U2S2hJgYROQdYFERZu3btcl5GWRl85zvw7LPwwgvOixuQIJzzDXX2A3V2S2iJQUTKgDuBa4IoLxaLBVEMV1wBM2bYHtFhE5RzPqHOfqDObgmzxnAbsNoY82gQhY0cOTKIYigttbeUXnnFLmESlHM+oc5+oM5uCSUxiMhxwPlAYH2FtwTY++zCC2HCBLj11sCKTEuQzvmCOvuBOrsl8MQgIiXAvcCPjDHvZHD8V0RkhYisaGpqorW1laamJhobG2lra6Ouro6uri6qq6uJxWJUVFQAe8cVqaioIBaLsW3bNrq6uqirq6OtrY3GxkYS56uvr6ezs5Oamhp6enr29DBMnCOxrqqqoru7m9raWjo6OmhoaKClpYWWlhYaGhro6OigtraW4uJuPv/5Zv7wB3j88dW9zlFZWUlPTw81NTV0dnZSX18/aKfq6up+ncaOHZszp+7ubqqqqtKeI0inga7TtGnTIuc00HUyxkTOaaDrtHnz5sg5DXSdiouLB+2ULYH3fBaR64ELgQXGmK74NgPcYozp9878UHo+V1dXM3/+/EF9djBs3gwzZ8JZZ8H99wdWbC+Cds4H1NkP1Dk78rrns4jMBK4DbgCGi0hZvBGapPfDXJR98MEHuzhtn0yYABddBA8/DO+9F2jRewjaOR9QZz9QZ7cEfSvpQKAUeAhoS1oAvh5/vdBFwatC6HV29dVgDNx2W+BFA+E4h406+4E6uyXQW0nx2sHiNLv+ik0W/w2sMMZ0pvt8Pg67PRCXXWbHUPr1r+HMM8OORlEUH8nrW0nGmHZjzAupS3z3+vj7tElhqIQ1scedd8Ixx8D550PQOU0nM/EDdfYD7ybqCaLxOUxaWuCII+wsb2++CdOnhx2Roig+kdc1hr4wxshASWGoJB7nCoNJk+Cpp6CjAz75SWhqCqbcMJ3DQp39QJ3dkhc1hkwZSo0hFotRVBRuHvzLX+D002HyZFi+HA480G15+eAcNOrsB+qcHQVZYwiCmpqasEPgYx+zyaG9HY49Ft56y215+eAcNOrsB+rsFm8Sw+zZs8MOAYAjj4SXXoKiItso/dBD7srKF+cgUWc/UGe3eJMYNm7cGHYIe1iwAN54Aw4/HL70JbjgAuh08CxWPjkHhTr7gTq7xZvEMH78+LBD6MWMGfD883Yq0AcegKVLc/84a745B4E6+4E6u8WbxLB9+/awQ9iH4mK4+Wbb7rBtGxx9NHz/+/ax1lyQj86uUWc/UGe3eJMY8vkJhmXLbEP0mWfaGsQJJ0BDw9DPm8/OrlBnP1Bnx2UFVlLIlJSUhB1Cv4wbB48+ahujq6pg8WJ48smhnTPfnV2gzn6gzm7xJjF0umjddcB550FFBcyebfs8XH017Nw5uHMVinMuUWc/UGe3eJMYJk6cGHYIGTNnDrz6qp0/+ic/sbeaBvNAQiE55wp19gN1dos3iWHDhg1hh5AVw4fD3Xfb20uVlXDYYfDCC9mdo9Ccc4E6+4E6u8WbxDBnzpywQxgUZ59tB94bPx5OOgnuuMPO8ZAJheo8FNTZD9TZLd4khtWrV4cdwqCZP98mh898Br7+dZssMrndWMjOg0Wd/UCd3eLNIHpRwBi4/Xa49lo4+GB4/HHbi1pRFKU/dBC9PojCxB4i8M1vwnPPQWurnePhv/6r71tLUXDOFnX2A3V2i9YYCpRNm+w4S3/+M3zhC3DffbD//mFHpShKPqI1hj6I2jeMKVPgT3+CH/wAfvMbWLIE/v733sdEzTkT1NkP1NktWmOIAC+/bBukW1ttv4dLLrG3nRRFUUBrDH1SVVUVdgjOOO44W1tYtgwuuwwuvRR27Yq2c1+osx+os1u8SQzz5s0LOwSnlJfDH/9on1i67z741KegvDzazumI+nVOhzr7QZDO3iSGhlwMV5rnFBXZNof777ezxB1zjLBqVdhRBYsP1zkVdfaDIJ29SQyTJ08OO4TA+Od/tk8rbdtWzBFHwI03Dn4gvkLDp+ucQJ39IEhnbxJDe3t72CEEyvHHw/LlGzn7bDsZ0NKl8Nvf5m4SoHzFt+sM6uwLQTp7kxhKS0vDDiFwpkzZjwcftPM6fPCBnQho9mx7u6mpKezo3ODjdVZnPwjS2ZvE4DOf/jSsXQu//70dSuO66+CAA+DUU20fCF9uMymKkhneJIYdO3aEHULgJDsPG2Yn/lm+HN55xw6tsWoVnHWWTRLf/ja8+254seYK36+zL6izW7xJDGVlZWGHEDh9Oc+bZ28nrV8PTz8NxxwDP/oRfOhD8IlPwBNP2H4QhYheZz9QZ7cEmhhE5GQReV5ENolIt4hsEJHHRWS+67Kbm5tdF5F3DOQ8bJjt7/C739kkcdNNUFMDZ5wBM2fC974HmzcHFGyO0OvsB+rslkCHxBCRc4DDgTeA94GZwLeBA4CFxpj1/X1+KENidHd3M3z48EF9tlAZjPPu3fDMM/Af/2HXI0fChRfCVVfZGkW+o9fZD9Q5O/J6SAxjzKPGmG8YY35jjHnRGPMg8DlgDHCmy7LXrFnj8vR5yWCchw2zjdJPPw1vv21Hbr33Xpg717ZRPP985jPIhYFeZz9QZ7eEPoieiEzE1h6uNMbc1d+xOoheODQ1wT33wM9/Du+/D0cdZacYPeaYsCNTFCUT8rrGkEBEhonIfiIyF7gX2AQ85rJMHaZ38EydajvJNTTYcZjWr4djj7X9Imprc1JEztDr7Afq7Jawnkp6A+gG1gAfBk40xrSkO1BEviIiK0RkRVNTE62trTQ1NdHY2EhbWxt1dXV0dXVRXV1NLBajoqIC2PtDrKioIBaLMWLECLq6uqirq6OtrY3GxkYS56uvr6ezs5Oamhp6enqorKzsdY7Euqqqiu7ubmpra+no6KChoYGWlhZaWlpoaGigo6OD2tpauru794yEmHqOyspKenp6qKmpobOzk/r6+kE7VVdX9+t00EEH5dSptraKiy+Gxx//OzffDE8/vZtDDoHPfW4z69YF4zTQdVqyZEnBXaeh/u6Vl5dHzmmg65QgSk4DXadp06YN2ilrjDGBL8AhwJHAOcBKYAMwa6DPLVmyxAyWFStWDPqzhYpr502bjPmXfzFmv/3sctddTovLCL3OfqDO2QGsMFn8j86HNoYyoB54zBhzaX/HahtDfrJ+PVx+uW2wfuopOOWUsCNSFCWZgmhjSMYY0w6sBea4LCdR9fOJoJz/4R/g8cdh0SI499xw2x30OvuBOrslH2oMk4E64GFjzCX9HTuUGkNPTw/FxcWD+myhErTz+vV2FNfycnjjDRgzJrCi96DX2Q/UOTvyusYgIr8TkRtE5HQRWSYilwAvAj3AHS7LXrt2rcvT5yVBOydqDmvWwGc/C1u3Blo8oNfZF9TZLUHfSnod+AzwK+CPwDXYxLDYGOO098aMGTNcnj4vCcN52TL45S/hxRfhox+F994Ltny9zn6gzm4JuufzrcaYJcaYMmPMSGPMQcaYS4wx9a7Lbm1tdV1E3hGW85e+ZIfTWL8ejjwSgnxeQK+zH6izW0JvfA6K0aNHhx1C4ITpfNJJ8MorUFICRx8N118PQYwarNfZD9TZLd4khl2FOo70EAjb+dBDoaICzjsPbrnFPrX0zDN2oD5XhO0cBursB0E6e5MYYrFY2CEETj44T5gA998Pzz1n53g45RQ7pPe3vgWvvQadnbktLx+cg0ad/SBIZ2+e9xo5cmTYIQROPjl//ONQXW07wD3wgB2E77bb7L7Zs+Ggg2D6dLtMmwaTJtll4kQYNw7KymC//QYuJ5+cg0Kd/SBIZ28Sw5YtWxg3blzYYQRKvjmXltqB9848E1pa4NVX7dDeb79tO8WtWgXNzX0P6z1qlE0S48fvTRZjx9r1uHF22bVrJwcdtHd/YvuIESASnGuQ5Nt1DgJ1dkvoHdyyYSgd3Lq6uhgxYkSOI8pvCtF51y6bNBLL++/b/hBtbXuXLVvssnWrXdrbB+4zsd9+NqEkkkpiSX4/frxtF1mwwDaax2KwerXtrHfoofYJq3xMLoV4nYeKOmdHth3cvKkxrFu3jvnznc8gmlcUonNJyd5bStmwe7dNEG++WUt5+dxeiSRdUtmwAaqq7LaOjt7nKi21ieDdd+2xCQ45BC64AE480U5cNHbsUG1zQyFe56Gizm7xpsYQi8UoKvKmrR1Q50zp6bE1jvfft7ez3nwTKitt28fxx8MRR9hHb3/5S3v7K8GkSbY9ZPx428ieuH2Vuowd23sZNQpyeVn0OvvBUJyzrTF4kxgqKio4/PDDcxxRfqPOuefdd23SqK21S3OzrVVs3mxrLO3tA/fXEIH997fLmDF716NH23ViSbwfNcq+Tl4nlpEjYc2aVRx99OJBJRtj8vP22EDo73Z2aGJQlJDZsWNvkmhr29sWsnWrvW2VWLZuhQ8+sEtHh310N/G+sxN27syu3NJS28ieWEpL9y777WdrRrt2QXe3jW3LFlvW9Okwb569Pbb//vbY4cPtbb2SEigu3vs68X7YsPRLUZFd+nqdWEQyf526LbEkv0/3GqCrC7Zvt2vYuz/1Z1NSYuMsxCSZCdrG0AeJ2b18Qp3DobQUpkyxy1DYudMmiG3b7Dr19fbtdnnnnQ1MmDBjzz/A5KW7e+9SXGxjmzAB5s+361Gj7HhWa9bYARC3bbPH+khy0klNSqn7UhOQiG3n2rnTJt9hw/YmnqIiWzMzxr4uLt6bXFPPDfa43bvtkvy9/SMfaeGxxyYF8rPwJjGE/c8iDNS5sEl+kqp/cju4mjF7axeJdfKye7fdnvjnlVhiMbsM9NqYvdsyfZ34Z5l4nViS96e+BnurbeRI+w864RaL2eSXSJ7JbsnnSBdD6r7EOY3pXbOKxWzNsavLvk7840/8bBNLctzJJNfAEhx5ZDBJATxKDHpP0g/UeeiI7P0Hl6/4ep0hGGdv2hj0KQY/UGc/UOfsyOuJesKkpqYm7BACR539QJ39IEhnbxLD7Nmzww4hcNTZD9TZD4J09iYxbNy4MewQAked/UCd/SBIZ28Sw/iBH+2IHOrsB+rsB0E6e5MYtm/fHnYIgaPOfqDOfhCkszeJwbcnGECdfUGd/SBIZ29+uiX5/FC2I9TZD9TZD4J0Lqh+DCLyPrB+kB+fCLTmMJxCQJ39QJ39YCjO/2CMKc/04IJKDENBRFZk08EjCqizH6izHwTp7M2tJEVRFCUzNDEoiqIovfApMdwXdgAhoM5+oM5+EJizN20MiqIoSmb4VGNQFEVRMkATg6IoitKLSCcGETlARH4jIltFpENEnhCRmWHHlS0icqaI/FZE1otIl4i8IyL/JiJjUo4bJyL/JSKtIrJNRP4sIgvTnK9URG4Xkab4+V4TkeODMxocIvKsiBgR+X7K9kh5i8gpIvKSiHTGf29XiMiJSfuj5nusiDwnIi1x3woRuTDlmIJ0FpEZInJ3PI7t8d/fWWmOy6mfiBSJyLUiUi8iO0SkUkTOyDhwY0wkF2AkUAu8DXwGOB2oAuqAUWHHl6XL68DjwHnACcBVQHt8e1H8GAH+H7ABOAf4JPAitkPMjJTzPRz//MXAx4AngC5gcdiu/fwMzgGaAAN8P2l7pLyBS4BdwJ3Ax4GTgW8Bp0bU98PxmP4a/xv9OHBv/DpfVujOwD8CzcDTwJ/iXrNSjsm5H3AL0A18HVgW/5nGgFMyijvsXwyHF+RKYDcwJ2nbbKAHuCbs+LJ0KU+z7fz4L9mJ8fenx98vSzpmLLAFuCtp26L4cV9O2lYMvAM8GbZrH/5lwKb4H01qYoiMNzAr/kd+VT/HRMY3HtMPgJ3A6JTtrwOvFboz8S9u8dcXkT4x5NQPmBRPCjellPMX4K1M4o7yraTTgNeNMWsTG4wx64BXsBeiYDDGvJ9m89/i6+nx9WnARmPMX5M+txX4A719T8N+I/2/Scf1AI8BJ4vI8ByGnituA1YbYx5Nsy9K3hdiv9X9vJ9jouQLsB82zq6U7e3svdVdsM7GmFgGh+Xa72Tsz/WhlHIeAhaKyIAz/kQ5MSzA3kZKZTUwP+BYXHBCfP2/8XV/vjNFZHTSceuMMalj+K7G/jLNyXWgQ0FEjsPWjr7axyFR8j4OqAHOFpE6EekRkbUicnnSMVHyBbg/vr5LRKaJSJmIJG6T3BnfFzXnVHLttwBbY1ib5jjI4P9flBPDeKAtzfYtwLiAY8kpIjIduBn4szFmRXxzf76w13mg4/JmBhQRKcHeG/2RMeadPg6Lkvc0YC5wO/BD4BPAcuCnInJl/Jgo+WKMeRt7H/50oBEb88+AS40xj8UPi5RzGnLtNx5oN/H7R/0c1yfFAx1Q4KTrvSeBR5FD4t8e/gfbVvLl5F1k5pvpcfnAt4AR2Ia0voiSdxEwBrjAGPNEfNvz8adYrhWRu4iWLyIyF/gt9tvspdhbSqcDPxeRHcaYh4mYcxpy7Tfkn0OUE0Mb6TPjONJn3bxHREqBJ4EDgROMMRuSdm+hb1/Y67wFSPfI7rik/aEj9rHi67ANdsNT7g8PF5Ey4AOi5b0ZW2NYnrL9OeyTKlOJli/Yxudd2KeudsW3/UVEJgD/LiKPEj3nVHLttwUYJyKSUmvI+OcQ5VtJq7H32lKZD1QHHMuQid9W+S3wEewjZ1Uph/Tn22CM6Uw6braIjExz3E72vS8ZFgcCpdgGs7akBewjeG3AQqLlvbqP7YlvejGi5Qv2GlYmJYUEbwITsE/YRM05lVz7rQaGAx9Kcxxk8P8vyonhSeAoETkwsSFeJT82vq9gEJEi7PPLHwNON8a8nuawJ4HpInJC0uf2Bz5Nb98ngRLgrKTjioEvAM8ZY7pzbzAoVmGfv05dwCaLZdg/hCh5/y6+Pjll+8nABmPMJqLlC/Yx5MUisl/K9iOBHdhvt1FzTiXXfs9iE8V5KeV8EXg7/nRm/4TxbG8QCzAK+4+jCnvP8jSgEniXlGem830B7iH+/D5wVMoyI35MEfAq8B5wNvafyQvYP6wDUs73GPYb90XYZPMb7B/h4WG7ZvCzSO3HEBlvbM3geewtpUuxjc/3xZ0viJpvPMYz435/iv+dfgL4aXzbj6PgHHc8M+nv+LL4+xNc+WEfXtgBXINt3L8HW+P8dEYxh/2L4fiCzMTefunA3o/+PSmdSwphAerjv1Dpln9NOm488Iv4L9R2bIeWRWnONwL4Mfbb2g7gDeAfw/bM8GfRKzFEzRvYH/tUTjP2W99bwLlR9Y3H+an4P8L343+nq7CPJw+LgnM/f7svuPIDhgHXY6dC7o7/Hp2Zacw67LaiKIrSiyi3MSiKoiiDQBODoiiK0gtNDIqiKEovNDEoiqIovdDEoCiKovRCE4OiKIrSC00MileIyAXx6RXTLe0hxnW/iGwY+EhFcU+UB9FTlP44CzuVYjI9YQSiKPmGJgbFV1aZpNn9FEXZi95KUpQUkm43HS8ivxeRThHZLCI/E5ERKcdOFZEHRKRVRLpF5C0R+WKac84WkQdFZFP8uHdF5N/THHeYiPw/EdkuIrUicqlLV0VJh9YYFF8ZFh+ZMpmY6T1H70PA48B/YIc7/y52cMYLAERkFPAidpz772AHQfsi8KCIjDTG3Bc/bjZ2GOntwI1ALXAAdsC4ZPYHHgF+gp2h78vAPSLyjkmaD1hRXKOJQfGVmjTb/gicmvT+aWPM1+OvnxMRA9wsIj8wxqzB/uOeCywzxrwQP+4ZEZkMfF9E/tsYsxu4CTv42SJjzMak8/8qpfwxwFcTSUBEXsImj3MATQxKYOitJMVXPgsckbJclXLM4ynvH8P+zXwk/v54oDEpKSR4CChn78QonwCeSkkK6dieXDMwdnz9WtLP2qUoztAag+Irb2fQ+Nzcx/vp8fV4oCnN5zYl7Qc7E1kmj6Kmm3K2GzuTnaIEhtYYFKVvJvfxvjG+3gJMSfO5xLbN8XUre5OJouQ9mhgUpW8+n/L+bOwsWG/G378IzBCRY1OOOxdoAf43/v454FQRmeoqUEXJJXorSfGVxSIyMc32FUmvTxGR27H/2D+CfaLogXjDM8D9wJXAEyJyHfZ20XnAx4FL4g3PxD/3T8CrIvID7JSz04FPGmP2ebRVUcJGE4PiK7/uY3t50usvAl/DztG7E/hPIPGUEsaYbfEJ3G/DzrE7BngH+JIx5qGk4+pF5EjsnN3/Fj+uEfifnNkoSg7RqT0VJQURuQD4JTBXe0crPqJtDIqiKEovNDEoiqIovdBbSYqiKEovtMagKIqi9EITg6IoitILTQyKoihKLzQxKIqiKL3QxKAoiqL04v8D7cjX1xi9cVMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEQCAYAAAC0v9O7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAteklEQVR4nO2de3hcVbnwf2+a0PRG00t6p6fFtkBLbaFFrsIpoigHQQWUi3KQBwSE73DxioAcUDwCIh7Qg3DOUeT+oaIHEZAqAh9329gQmhOahqahaZqQNmlIm6ZNZ31/rJl2Mp0kM8msvWf2en/Ps589s/eevd5fdpJ31l57rSXGGBRFURQlQVHYASiKoij5hSYGRVEUpReaGBRFUZReaGJQFEVReqGJQVEURelFcdgBZMPEiRPNrFmzwg5DURSloFi5cmWrMaY80+MLKjHMmjWLFStWDOqzdXV1fOhDH8pxRPmNOvuBOvvBUJxFZH02x3tzK2n8+PFhhxA46uwH6uwHQTp7kxi2b98edgiBo85+oM5+EKSzN4mhqMgb1T2osx+osx8E6ezNT7ekpCTsEAJHnf1Anf0gSGdvEkNnZ2fYIQSOOvuBOvtBkM7eJIaJEyeGHULgqLMfqLMfBOnsTWLYsGFD2CEEjjr7gTr7QZDOXiSG996Dhx6ax9q1YUcSLHPmzAk7hMBRZz9QZ7d4kRg2b4ZbbinirbfCjiRYVq9eHXYIgaPOfqDObvEiMUyZYtebNoUbR9AsWrQo7BACR539QJ3d4kViKC+HoiJDU1PYkQTLypUrww4hcNTZD9TZLVJIU3suXbrUDHaspKlT4dRT4T//M8dBKYqi5DkistIYszTT472oMQCMHbtdawweoM5+oM5u8abGcMop0NICg/y4oihKwaI1hj4oLd3iXY2hqqoq7BACR539QJ3d4k1imDt3f5qbIRYLO5LgmDdvXtghBI46+4E6u8WbxDB8+BZ274bW1rAjCY6GhoawQwgcdfYDdXaLN4lhzpzRgF99GSZPnhx2CIGjzn6gzm7xJjGMGtUB4FU7Q3t7e9ghBI46+4E6u8WbxHDAAXYsc59qDKWlpWGHEDjq7Afq7BZvEkN5+W7ArxqDoijKYPAmMQwbtoMxY/yqMezYsSPsEAJHnf1And3iTWIoKytj6lS/EkNZWVnYIQSOOvuBOrvFm8TQ3NzMlCl+3Upqbm4OO4TAUWc/UGe3BJoYROQFETF9LM+6LHvmzJlMmeJXjWHmzJlhhxA46uwH6uyWoGsMXwWOTlmuie970mXBa9asYepUv2oMa9asCTuEwFFnP1BntxQHVhJgjKlO3SYiFwM7gcdclr1w4UKmTIEPPoBt22DUKJel5QcLFy4MO4TAUWc/UGe3hNrGICIjgLOAPxhjtrgsa+XKlUydal/7cjtJhyb2A3X2gyCdw258/hwwBviV64KWLFni3RSfS5YsCTuEwFFnP1Bnt4SdGM4HWoBn+jpARL4iIitEZEVTUxOtra00NTXR2NhIW1sbdXV1dHV1UV1dTSwWo6KiAtibXSsqKojFYjz//POMG2efA66t7aSxsZHE+err6+ns7KSmpoaenh4qKyt7nSOxrqqqoru7m9raWjo6OmhoaKClpYWWlhYaGhro6OigtraW7u7uPUPkpp6jsrKSnp4eampq6OzspL6+ftBO1dXVdHV1UVdXR1tb2z5Or7/+euScBrpOK1eujJzTQNfppZdeipzTQNdp+fLlkXMa6Dq9/PLLg3bKltAm6hGRacB7wL8bY64Z6HgY2kQ9YCfqmTwZ7r4brrhi0KdRFEUpKAppop4vxst3fhsJbBaeOBGGDfPnyaTEtxqfUGc/UGe3hJkYzgcqjTGB2C5YsICiIltj8KWNYcGCBWGHEDjq7Afq7JZQEoOILAUWEFBtAWDt2rUAXg2LkXD2CXX2A3V2S1g1hvOBHuCRoAqcMWMGgFfDYiScfUKd/UCd3RJ4YhCREuAc4FljTGCDf7TG5/T0qcbQ6tM8pnHU2Q/U2S2B9nwGMMbsAsqDLnf0aDu155Qp0NwMu3fbhugok3D2CXX2A3V2S9j9GAJj165dgK0xxGLgwxeOhLNPqLMfqLNbvEkMsVgMYE/vZx/aGRLOPqHOfqDObvEmMYwcORLAq2ExEs4+oc5+oM5u8SYxbNlix+jzKTEknH1Cnf1And3iTWKYNm0aAOXxZu/33w8xmIBIOPuEOvuBOrvFm8Swbt06AEaPhtJSPxJDwtkn1NkP1Nkt3iSGgw8+GAARmDTJDqgXdRLOPqHOfqDObvEmMaxatWrP6/JyP2oMyc6+oM5+oM5uCW3Y7cEw1GG3E5xyik0Mf/tbDoJSFEXJcwpp2O1ASZ4Wr7zcj1tJOv2hH6izHwTp7GWN4RvfgJ/9DLZts20OiqIoUUZrDH2QmPoObI2hq8smhiiT7OwL6uwH6uwWbxLD4sWL97yeNMmuo94AnezsC+rsB+rsFm8SQ01NzZ7XiU5uUW9nSHb2BXX2A3V2izeJYfbs2Xte+1JjSHb2BXX2A3V2izeJYePGjXte+1JjSHb2BXX2A3V2izeJYfz48Xte+zJeUrKzL6izH6izW7xJDNu3b9/zetQoGDky+jWGZGdfUGc/UGe3eJMYiop6q06aFP0aQ6qzD6izH6iz47ICKylkSkpKer33ofdzqrMPqLMfqLNbvEkMnZ2dvd77UGNIdfYBdfYDdXaLN4lh4sSJvd77UGNIdfYBdfYDdXaLN4lhw4YNvd4nagwFNFRU1qQ6+4A6+4E6u8WbxDBnzpxe78vLobsbPvggpIACINXZB9TZD9TZLd4khtWrV/d670Pv51RnH1BnP1Bnt3iTGBYtWtTrvQ+9n1OdfUCd/UCd3RJKYhCRU0TkJRHpFJEOEVkhIie6LDN1kgsfagw6mYkfqLMfBOkceGIQkUuA/wFWAp8FzgJ+DYx0We6SJUt6vfehxpDq7APq7Afq7JZAE4OIzAJ+AnzDGHO1MWa5MeZPxphbjTFPuSw7Ndv6MF6SfqvyA3X2g8hO7SkiNwNfAyYYY3Zk+/lcTe2ZYMwYuOgiuPPOnJ1SURQl78j3qT2PA2qAs0WkTkR6RGStiFzuuuCqqqp9tkW993M656ijzn6gzm4JOjFMA+YCtwM/BD4BLAd+KiJXpvuAiHwl3ji9oqmpidbWVpqammhsbKStrY26ujq6urqorq4mFovtmRc1Ue2qqKggFothjKGrq4u6ujra2tpobGykrGwnjY07qa+vp7Ozk5qaGnp6eqisrOx1jsS6qqqK7u5uamtr6ejooKGhgZaWFlpaWmhoaKCjo4Pa2lq6u7v3XMTUc1RWVtLT00NNTQ2dnZ3U19cP2qm6unofp8TPqL6+nunTp0fOaaDrNG/evMg5DXSdRo0aFTmnga5TV1dX5JwGuk5lZWWDdsqWoG8lrcEmhjOMMU8kbX8GOAyYavoJaCi3kmpra5k7d26vbaedBu+9B3//+6BOmfekc4466uwH6pwd+X4raXN8vTxl+3PAZGCqq4InT568z7aoj5eUzjnqqLMfqLNbgk4MfXXdk/g65qrg9vb2fbZFfbykdM5RR539QJ3dEnRi+F18fXLK9pOBDcaYTa4KLi0t3WdbeTns2gVbt7oqNVzSOUcddfYDdXZLcWAlWZ4G/grcKyITgXeBM7GN0F8OOJZevZ/LyoIuXVEUJT8JtMYQb1j+DPAYcBPwFHAUcJ4x5n6XZe/YsW+3iaj3fk7nHHXU2Q/U2S1B1xgwxnQAl8eXwChLUyVI1BiimhjSOUcddfYDdXaLN6OrNjc377MtkRjS7IoE6Zyjjjr7gTq7xZvEMHPmzH22TZkCw4ZBY2MIAQVAOueoo85+oM5u8SYxrFmzZp9tw4bZ5BDVWQLTOUcddfYDdXZLoD2fh0quB9EDOOoo2H9/eO65nJ5WURQlb8j3ns+h0deQtTNmRLfGoEMT+4E6+0Fkh90eKi5qDFddBb/4BXR05PS0iqIoeYPWGPqgr2w7fTp88EE0E4N+q/IDdfYDrTH0gYsaw6OPwrnnQnU1HHJITk+tKIqSF2iNoQ8S46enMmOGXUexnaEv5yijzn6gzm7xJjEsWLAg7fYoJ4a+nKOMOvuBOrvFm8Swdu3atNunTbPrKCaGvpyjjDr7gTq7xZvEMCNRNUhh+HA7mF4Uez/35Rxl1NkP1Nkt3iSG1tbWPvdFtS9Df85RRZ39QJ3d4k1iGD16dJ/7opoY+nOOKursB+rsFm8Sw65du/rcF9XE0J9zVFFnP1Bnt3iTGGKxvqeTnj4dNm+Grq4AAwqA/pyjijr7gTq7xZvEMHLkyD73Jdp0Nm4MKJiA6M85qqizH6izW3KSGERkQi7O45ItW7b0uS+qfRn6c44q6uwH6uyWrBKDiFwsIt9Ier9QRDYALSKyQkSm5DzCHDEt0WEhDVFNDP05RxV19gN1dku2NYb/AyTfif8x0A5cBYwFbs5JVA5Yt25dn/umT7frqCWG/pyjijr7gTq7pTjL42cCNQAiMhY4AfiMMeZpEdkM/FuO48sZBx98cJ/7Ro+GsWOj18mtP+eoos5+oM5uybbGMAxINI0fBxjghfj794BJuQkr96xatarf/VF8ZHUg5yiizn6gzm7JNjHUAv8Uf3028KoxZnv8/TQgb1uEDj/88H73RzExDOQcRdTZD9TZLdkmhh8BV4lIK3AucHfSvmXAW7kKLNcMNMnF9OnRSww6mYkfqLMfBOmcVRuDMeYREWkAjgT+Zox5KWl3M/BkLoPLJUuWLOl3/4wZsGkT7NoFJSUBBeWYgZyjiDr7gTq7Jet+DMaYl40xd6QkBYwxNxpjns5daLmloqKi3/0zZoAxNjlEhYGco4g6+4E6uyXbfgzHiMipSe8niMijIlIlIj8SkWG5DzE3LF68uN/9UezLMJBzFFFnP1Bnt2RbY/ghkFyfuR04BVgDXAZ8p78Pi8g/iohJs7RnGUfW1NTU9Ls/in0ZBnKOIursB+rslmwTwyHACgARKQHOBK42xpwBXIdtkM6EfwGOTlpOyjKOrJk9e3a/+2fOtOsoTQw1kHMUUWc/UGe3ZJsYRgMd8dcfAUYBT8XfV2A7wGXC/xpjXk9aVmQZR9ZsHGCEvLIymD8fXnzRdSTBMZBzFFFnP1Bnt2SbGBqBRfHXnwLeNsa0xN+PA7an/VQeMH78+AGPWbYMXn7ZPpkUBTJxjhrq7Afq7JZsE8OjwA9E5DfANcBDSfsOx3aAy4SHRWS3iGwWkUdEJNOaxqDZvn3gnLVsGWzbBiuc11+CIRPnqKHOfqDObsk2MfwrcCswHNsQfWfSvkXArwf4/FbgDuAi4ETge9j2hddEJO1wGiLylfjIrSuamppobW2lqamJxsZG2traqKuro6uri+rqamKx2J5HuhKdQSoqKojFYjQ2NtLV1UVdXR1tbW00NjaSOF99fT2dnZ1Mm2bz2iOPNPU6R2JdVVVFd3c3tbW1dHR00NDQQEtLCy0tLTQ0NNDR0UFtbS3d3d1UVVWlPUdlZSU9PT3U1NTQ2dlJfX39oJ2qq6v7ddq5cyc1NTX09PRQWVkZCafOzs5+nYqKiiLnNNB12rx5c+ScBrpOiQHlouQ00HXaunXroJ2yRYwxWX8ol4jI4cCbwA+NMdf3d+zSpUvNikF+nW9tbWXixIkDHvfhD8PkybB8+aCKySsydY4S6uwH6pwdIrLSGLM00+MHNVGPiBwqIpeLyA0i8lUROXQw5wEwxlRgH3c9YrDnyITOzs6Mjlu2DF55BXbudBlNMGTqHCXU2Q/U2S3ZdnArFpGHgErsOEk3AT8FKkXkwSF0cBPsSK3OyDTTLltm535+802X0QSDb9+oQJ19QZ3dkm2N4Ubg88B3gdnAiPj6u8AX4uusEJGlwDzgjWw/mw0bMuy5dvzxIAJ//avLaIIhU+cooc5+oM5uyaqNQUTWAb8wxnwvzb7vAl82xvTZC0NEHgbWYfs8tAOHAddiH3M93BjT2l/5Q2lj6Onpobg4szEDDzsMxo2D558fVFF5QzbOUUGd/UCds8N1G8M04LU+9r0a398fbwOnAb8E/oSdEvQJ4MiBksJQWb16dcbHLlsGr70GO3Y4DCgAsnGOCursB+rslsHUGO43xtyUZt+ANYahMpQaQzY8+SScfjq88AKccILz4hRFUZziusbwMHBd/GmkA0VkhIjMFpFrsWMlPZjl+QIjm0kujj8ehg2DRx91GFAA6GQmfqDOfhCkc7Y1hmLgAey0nskfFOAR4J+NMbtzGmESQdUYAK64Au65B1atgoULAylSURTFCU5rDMaYHmPMucBC4ArsU0hXAIcC9wN/z+Z8QZJttr3pJhg7Fq6+2k7gU4jotyo/UGc/yNsaQ78nEjkDeNwY42yyniBrDAB33QVXXgm//71tc1AURSlEAun5XIgkxiXJhssug0MOga99Dbq7HQTlmME4Fzrq7Afq7BZvEsO8efOy/kxJCfz4x1BXBz/7mYOgHDMY50JHnf1And3iTWJoaGgY1Oc++Uk46SS49VYotJF+B+tcyKizH6izWwbsRiciB2Z4rilDjMUpkydPHvRnb7wRPvpR+PnP4ZprchiUY4biXKiosx+os1syqTGsxU7AM9Byt6MYc0J7e/ugP3vccXDiiXDbbYVVaxiKc6Gizn6gzm7JZOCNLzuPIgBKS0uH9Pkbb7S9oO+91z7CWggM1bkQUWc/UGe3DJgYjDG/CiKQfOf44+0YSrfdBpdeCiNGhB2RoiiKG7xpfN6RgxHxbrwRNm2ytYZCIBfOhYY6+4E6u8WbxFBWVjbkc5xwgm1ruOUW6OgYekyuyYVzoaHOfqDObvEmMTQ3N+fkPD/8IbS2wh135OR0TsmVcyGhzn6gzm7xJjHMnDkzJ+c54gj4/OdtYti0KSendEaunAsJdfYDdXaLN4lhzZo1OTvXLbfYITJuvjlnp3RCLp0LBXX2A3V2S84G0QuCoAfR648rrrAd3qqrwcPe+YqiFBA6iF4f5HrI2htugNJS+Pa3c3ranKJDE/uBOvtBQQ67HQT5VGMAe0vp+uvhL3+xTyspiqLkI1pj6AMX2fZrX4NZs+ycDT09OT/9kNFvVX6gzn6gNYY+yLcaA8ATT8AZZ9hhub/61bCjURRF2RetMfRBZWWlk/N+9rP2NtINN8CWLU6KGDSunPMZdfYDdXaLNzWGnp4eioszGTMwe6qqYPFiuPxyOx1ovuDSOV9RZz9Q5+zQGkMfrF271tm5Fy6Eiy+2j6+++66zYrLGpXO+os5+oM5u8SYxzJgxw+n5v/tdKC62t5TyBdfO+Yg6+4E6u8WbxNDa2ur0/NOmwVVXwSOPwKpVTovKGNfO+Yg6+4E6uyX0xCAiz4qIEZHvuyxn9OjRLk8PwDe/CePGwbXXOi8qI4JwzjfU2Q/U2S2hJgYROQdYFERZu3btcl5GWRl85zvw7LPwwgvOixuQIJzzDXX2A3V2S2iJQUTKgDuBa4IoLxaLBVEMV1wBM2bYHtFhE5RzPqHOfqDObgmzxnAbsNoY82gQhY0cOTKIYigttbeUXnnFLmESlHM+oc5+oM5uCSUxiMhxwPlAYH2FtwTY++zCC2HCBLj11sCKTEuQzvmCOvuBOrsl8MQgIiXAvcCPjDHvZHD8V0RkhYisaGpqorW1laamJhobG2lra6Ouro6uri6qq6uJxWJUVFQAe8cVqaioIBaLsW3bNrq6uqirq6OtrY3GxkYS56uvr6ezs5Oamhp6enr29DBMnCOxrqqqoru7m9raWjo6OmhoaKClpYWWlhYaGhro6OigtraW4uJuPv/5Zv7wB3j88dW9zlFZWUlPTw81NTV0dnZSX18/aKfq6up+ncaOHZszp+7ubqqqqtKeI0inga7TtGnTIuc00HUyxkTOaaDrtHnz5sg5DXSdiouLB+2ULYH3fBaR64ELgQXGmK74NgPcYozp9878UHo+V1dXM3/+/EF9djBs3gwzZ8JZZ8H99wdWbC+Cds4H1NkP1Dk78rrns4jMBK4DbgCGi0hZvBGapPfDXJR98MEHuzhtn0yYABddBA8/DO+9F2jRewjaOR9QZz9QZ7cEfSvpQKAUeAhoS1oAvh5/vdBFwatC6HV29dVgDNx2W+BFA+E4h406+4E6uyXQW0nx2sHiNLv+ik0W/w2sMMZ0pvt8Pg67PRCXXWbHUPr1r+HMM8OORlEUH8nrW0nGmHZjzAupS3z3+vj7tElhqIQ1scedd8Ixx8D550PQOU0nM/EDdfYD7ybqCaLxOUxaWuCII+wsb2++CdOnhx2Roig+kdc1hr4wxshASWGoJB7nCoNJk+Cpp6CjAz75SWhqCqbcMJ3DQp39QJ3dkhc1hkwZSo0hFotRVBRuHvzLX+D002HyZFi+HA480G15+eAcNOrsB+qcHQVZYwiCmpqasEPgYx+zyaG9HY49Ft56y215+eAcNOrsB+rsFm8Sw+zZs8MOAYAjj4SXXoKiItso/dBD7srKF+cgUWc/UGe3eJMYNm7cGHYIe1iwAN54Aw4/HL70JbjgAuh08CxWPjkHhTr7gTq7xZvEMH78+LBD6MWMGfD883Yq0AcegKVLc/84a745B4E6+4E6u8WbxLB9+/awQ9iH4mK4+Wbb7rBtGxx9NHz/+/ax1lyQj86uUWc/UGe3eJMY8vkJhmXLbEP0mWfaGsQJJ0BDw9DPm8/OrlBnP1Bnx2UFVlLIlJSUhB1Cv4wbB48+ahujq6pg8WJ48smhnTPfnV2gzn6gzm7xJjF0umjddcB550FFBcyebfs8XH017Nw5uHMVinMuUWc/UGe3eJMYJk6cGHYIGTNnDrz6qp0/+ic/sbeaBvNAQiE55wp19gN1dos3iWHDhg1hh5AVw4fD3Xfb20uVlXDYYfDCC9mdo9Ccc4E6+4E6u8WbxDBnzpywQxgUZ59tB94bPx5OOgnuuMPO8ZAJheo8FNTZD9TZLd4khtWrV4cdwqCZP98mh898Br7+dZssMrndWMjOg0Wd/UCd3eLNIHpRwBi4/Xa49lo4+GB4/HHbi1pRFKU/dBC9PojCxB4i8M1vwnPPQWurnePhv/6r71tLUXDOFnX2A3V2i9YYCpRNm+w4S3/+M3zhC3DffbD//mFHpShKPqI1hj6I2jeMKVPgT3+CH/wAfvMbWLIE/v733sdEzTkT1NkP1NktWmOIAC+/bBukW1ttv4dLLrG3nRRFUUBrDH1SVVUVdgjOOO44W1tYtgwuuwwuvRR27Yq2c1+osx+os1u8SQzz5s0LOwSnlJfDH/9on1i67z741KegvDzazumI+nVOhzr7QZDO3iSGhlwMV5rnFBXZNof777ezxB1zjLBqVdhRBYsP1zkVdfaDIJ29SQyTJ08OO4TA+Od/tk8rbdtWzBFHwI03Dn4gvkLDp+ucQJ39IEhnbxJDe3t72CEEyvHHw/LlGzn7bDsZ0NKl8Nvf5m4SoHzFt+sM6uwLQTp7kxhKS0vDDiFwpkzZjwcftPM6fPCBnQho9mx7u6mpKezo3ODjdVZnPwjS2ZvE4DOf/jSsXQu//70dSuO66+CAA+DUU20fCF9uMymKkhneJIYdO3aEHULgJDsPG2Yn/lm+HN55xw6tsWoVnHWWTRLf/ja8+254seYK36+zL6izW7xJDGVlZWGHEDh9Oc+bZ28nrV8PTz8NxxwDP/oRfOhD8IlPwBNP2H4QhYheZz9QZ7cEmhhE5GQReV5ENolIt4hsEJHHRWS+67Kbm5tdF5F3DOQ8bJjt7/C739kkcdNNUFMDZ5wBM2fC974HmzcHFGyO0OvsB+rslkCHxBCRc4DDgTeA94GZwLeBA4CFxpj1/X1+KENidHd3M3z48EF9tlAZjPPu3fDMM/Af/2HXI0fChRfCVVfZGkW+o9fZD9Q5O/J6SAxjzKPGmG8YY35jjHnRGPMg8DlgDHCmy7LXrFnj8vR5yWCchw2zjdJPPw1vv21Hbr33Xpg717ZRPP985jPIhYFeZz9QZ7eEPoieiEzE1h6uNMbc1d+xOoheODQ1wT33wM9/Du+/D0cdZacYPeaYsCNTFCUT8rrGkEBEhonIfiIyF7gX2AQ85rJMHaZ38EydajvJNTTYcZjWr4djj7X9Imprc1JEztDr7Afq7Jawnkp6A+gG1gAfBk40xrSkO1BEviIiK0RkRVNTE62trTQ1NdHY2EhbWxt1dXV0dXVRXV1NLBajoqIC2PtDrKioIBaLMWLECLq6uqirq6OtrY3GxkYS56uvr6ezs5Oamhp6enqorKzsdY7Euqqqiu7ubmpra+no6KChoYGWlhZaWlpoaGigo6OD2tpauru794yEmHqOyspKenp6qKmpobOzk/r6+kE7VVdX9+t00EEH5dSptraKiy+Gxx//OzffDE8/vZtDDoHPfW4z69YF4zTQdVqyZEnBXaeh/u6Vl5dHzmmg65QgSk4DXadp06YN2ilrjDGBL8AhwJHAOcBKYAMwa6DPLVmyxAyWFStWDPqzhYpr502bjPmXfzFmv/3sctddTovLCL3OfqDO2QGsMFn8j86HNoYyoB54zBhzaX/HahtDfrJ+PVx+uW2wfuopOOWUsCNSFCWZgmhjSMYY0w6sBea4LCdR9fOJoJz/4R/g8cdh0SI499xw2x30OvuBOrslH2oMk4E64GFjzCX9HTuUGkNPTw/FxcWD+myhErTz+vV2FNfycnjjDRgzJrCi96DX2Q/UOTvyusYgIr8TkRtE5HQRWSYilwAvAj3AHS7LXrt2rcvT5yVBOydqDmvWwGc/C1u3Blo8oNfZF9TZLUHfSnod+AzwK+CPwDXYxLDYGOO098aMGTNcnj4vCcN52TL45S/hxRfhox+F994Ltny9zn6gzm4JuufzrcaYJcaYMmPMSGPMQcaYS4wx9a7Lbm1tdV1E3hGW85e+ZIfTWL8ejjwSgnxeQK+zH6izW0JvfA6K0aNHhx1C4ITpfNJJ8MorUFICRx8N118PQYwarNfZD9TZLd4khl2FOo70EAjb+dBDoaICzjsPbrnFPrX0zDN2oD5XhO0cBursB0E6e5MYYrFY2CEETj44T5gA998Pzz1n53g45RQ7pPe3vgWvvQadnbktLx+cg0ad/SBIZ2+e9xo5cmTYIQROPjl//ONQXW07wD3wgB2E77bb7L7Zs+Ggg2D6dLtMmwaTJtll4kQYNw7KymC//QYuJ5+cg0Kd/SBIZ28Sw5YtWxg3blzYYQRKvjmXltqB9848E1pa4NVX7dDeb79tO8WtWgXNzX0P6z1qlE0S48fvTRZjx9r1uHF22bVrJwcdtHd/YvuIESASnGuQ5Nt1DgJ1dkvoHdyyYSgd3Lq6uhgxYkSOI8pvCtF51y6bNBLL++/b/hBtbXuXLVvssnWrXdrbB+4zsd9+NqEkkkpiSX4/frxtF1mwwDaax2KwerXtrHfoofYJq3xMLoV4nYeKOmdHth3cvKkxrFu3jvnznc8gmlcUonNJyd5bStmwe7dNEG++WUt5+dxeiSRdUtmwAaqq7LaOjt7nKi21ieDdd+2xCQ45BC64AE480U5cNHbsUG1zQyFe56Gizm7xpsYQi8UoKvKmrR1Q50zp6bE1jvfft7ez3nwTKitt28fxx8MRR9hHb3/5S3v7K8GkSbY9ZPx428ieuH2Vuowd23sZNQpyeVn0OvvBUJyzrTF4kxgqKio4/PDDcxxRfqPOuefdd23SqK21S3OzrVVs3mxrLO3tA/fXEIH997fLmDF716NH23ViSbwfNcq+Tl4nlpEjYc2aVRx99OJBJRtj8vP22EDo73Z2aGJQlJDZsWNvkmhr29sWsnWrvW2VWLZuhQ8+sEtHh310N/G+sxN27syu3NJS28ieWEpL9y777WdrRrt2QXe3jW3LFlvW9Okwb569Pbb//vbY4cPtbb2SEigu3vs68X7YsPRLUZFd+nqdWEQyf526LbEkv0/3GqCrC7Zvt2vYuz/1Z1NSYuMsxCSZCdrG0AeJ2b18Qp3DobQUpkyxy1DYudMmiG3b7Dr19fbtdnnnnQ1MmDBjzz/A5KW7e+9SXGxjmzAB5s+361Gj7HhWa9bYARC3bbPH+khy0klNSqn7UhOQiG3n2rnTJt9hw/YmnqIiWzMzxr4uLt6bXFPPDfa43bvtkvy9/SMfaeGxxyYF8rPwJjGE/c8iDNS5sEl+kqp/cju4mjF7axeJdfKye7fdnvjnlVhiMbsM9NqYvdsyfZ34Z5l4nViS96e+BnurbeRI+w864RaL2eSXSJ7JbsnnSBdD6r7EOY3pXbOKxWzNsavLvk7840/8bBNLctzJJNfAEhx5ZDBJATxKDHpP0g/UeeiI7P0Hl6/4ep0hGGdv2hj0KQY/UGc/UOfsyOuJesKkpqYm7BACR539QJ39IEhnbxLD7Nmzww4hcNTZD9TZD4J09iYxbNy4MewQAked/UCd/SBIZ28Sw/iBH+2IHOrsB+rsB0E6e5MYtm/fHnYIgaPOfqDOfhCkszeJwbcnGECdfUGd/SBIZ29+uiX5/FC2I9TZD9TZD4J0Lqh+DCLyPrB+kB+fCLTmMJxCQJ39QJ39YCjO/2CMKc/04IJKDENBRFZk08EjCqizH6izHwTp7M2tJEVRFCUzNDEoiqIovfApMdwXdgAhoM5+oM5+EJizN20MiqIoSmb4VGNQFEVRMkATg6IoitKLSCcGETlARH4jIltFpENEnhCRmWHHlS0icqaI/FZE1otIl4i8IyL/JiJjUo4bJyL/JSKtIrJNRP4sIgvTnK9URG4Xkab4+V4TkeODMxocIvKsiBgR+X7K9kh5i8gpIvKSiHTGf29XiMiJSfuj5nusiDwnIi1x3woRuTDlmIJ0FpEZInJ3PI7t8d/fWWmOy6mfiBSJyLUiUi8iO0SkUkTOyDhwY0wkF2AkUAu8DXwGOB2oAuqAUWHHl6XL68DjwHnACcBVQHt8e1H8GAH+H7ABOAf4JPAitkPMjJTzPRz//MXAx4AngC5gcdiu/fwMzgGaAAN8P2l7pLyBS4BdwJ3Ax4GTgW8Bp0bU98PxmP4a/xv9OHBv/DpfVujOwD8CzcDTwJ/iXrNSjsm5H3AL0A18HVgW/5nGgFMyijvsXwyHF+RKYDcwJ2nbbKAHuCbs+LJ0KU+z7fz4L9mJ8fenx98vSzpmLLAFuCtp26L4cV9O2lYMvAM8GbZrH/5lwKb4H01qYoiMNzAr/kd+VT/HRMY3HtMPgJ3A6JTtrwOvFboz8S9u8dcXkT4x5NQPmBRPCjellPMX4K1M4o7yraTTgNeNMWsTG4wx64BXsBeiYDDGvJ9m89/i6+nx9WnARmPMX5M+txX4A719T8N+I/2/Scf1AI8BJ4vI8ByGnituA1YbYx5Nsy9K3hdiv9X9vJ9jouQLsB82zq6U7e3svdVdsM7GmFgGh+Xa72Tsz/WhlHIeAhaKyIAz/kQ5MSzA3kZKZTUwP+BYXHBCfP2/8XV/vjNFZHTSceuMMalj+K7G/jLNyXWgQ0FEjsPWjr7axyFR8j4OqAHOFpE6EekRkbUicnnSMVHyBbg/vr5LRKaJSJmIJG6T3BnfFzXnVHLttwBbY1ib5jjI4P9flBPDeKAtzfYtwLiAY8kpIjIduBn4szFmRXxzf76w13mg4/JmBhQRKcHeG/2RMeadPg6Lkvc0YC5wO/BD4BPAcuCnInJl/Jgo+WKMeRt7H/50oBEb88+AS40xj8UPi5RzGnLtNx5oN/H7R/0c1yfFAx1Q4KTrvSeBR5FD4t8e/gfbVvLl5F1k5pvpcfnAt4AR2Ia0voiSdxEwBrjAGPNEfNvz8adYrhWRu4iWLyIyF/gt9tvspdhbSqcDPxeRHcaYh4mYcxpy7Tfkn0OUE0Mb6TPjONJn3bxHREqBJ4EDgROMMRuSdm+hb1/Y67wFSPfI7rik/aEj9rHi67ANdsNT7g8PF5Ey4AOi5b0ZW2NYnrL9OeyTKlOJli/Yxudd2KeudsW3/UVEJgD/LiKPEj3nVHLttwUYJyKSUmvI+OcQ5VtJq7H32lKZD1QHHMuQid9W+S3wEewjZ1Uph/Tn22CM6Uw6braIjExz3E72vS8ZFgcCpdgGs7akBewjeG3AQqLlvbqP7YlvejGi5Qv2GlYmJYUEbwITsE/YRM05lVz7rQaGAx9Kcxxk8P8vyonhSeAoETkwsSFeJT82vq9gEJEi7PPLHwNON8a8nuawJ4HpInJC0uf2Bz5Nb98ngRLgrKTjioEvAM8ZY7pzbzAoVmGfv05dwCaLZdg/hCh5/y6+Pjll+8nABmPMJqLlC/Yx5MUisl/K9iOBHdhvt1FzTiXXfs9iE8V5KeV8EXg7/nRm/4TxbG8QCzAK+4+jCnvP8jSgEniXlGem830B7iH+/D5wVMoyI35MEfAq8B5wNvafyQvYP6wDUs73GPYb90XYZPMb7B/h4WG7ZvCzSO3HEBlvbM3geewtpUuxjc/3xZ0viJpvPMYz435/iv+dfgL4aXzbj6PgHHc8M+nv+LL4+xNc+WEfXtgBXINt3L8HW+P8dEYxh/2L4fiCzMTefunA3o/+PSmdSwphAerjv1Dpln9NOm488Iv4L9R2bIeWRWnONwL4Mfbb2g7gDeAfw/bM8GfRKzFEzRvYH/tUTjP2W99bwLlR9Y3H+an4P8L343+nq7CPJw+LgnM/f7svuPIDhgHXY6dC7o7/Hp2Zacw67LaiKIrSiyi3MSiKoiiDQBODoiiK0gtNDIqiKEovNDEoiqIovdDEoCiKovRCE4OiKIrSC00MileIyAXx6RXTLe0hxnW/iGwY+EhFcU+UB9FTlP44CzuVYjI9YQSiKPmGJgbFV1aZpNn9FEXZi95KUpQUkm43HS8ivxeRThHZLCI/E5ERKcdOFZEHRKRVRLpF5C0R+WKac84WkQdFZFP8uHdF5N/THHeYiPw/EdkuIrUicqlLV0VJh9YYFF8ZFh+ZMpmY6T1H70PA48B/YIc7/y52cMYLAERkFPAidpz772AHQfsi8KCIjDTG3Bc/bjZ2GOntwI1ALXAAdsC4ZPYHHgF+gp2h78vAPSLyjkmaD1hRXKOJQfGVmjTb/gicmvT+aWPM1+OvnxMRA9wsIj8wxqzB/uOeCywzxrwQP+4ZEZkMfF9E/tsYsxu4CTv42SJjzMak8/8qpfwxwFcTSUBEXsImj3MATQxKYOitJMVXPgsckbJclXLM4ynvH8P+zXwk/v54oDEpKSR4CChn78QonwCeSkkK6dieXDMwdnz9WtLP2qUoztAag+Irb2fQ+Nzcx/vp8fV4oCnN5zYl7Qc7E1kmj6Kmm3K2GzuTnaIEhtYYFKVvJvfxvjG+3gJMSfO5xLbN8XUre5OJouQ9mhgUpW8+n/L+bOwsWG/G378IzBCRY1OOOxdoAf43/v454FQRmeoqUEXJJXorSfGVxSIyMc32FUmvTxGR27H/2D+CfaLogXjDM8D9wJXAEyJyHfZ20XnAx4FL4g3PxD/3T8CrIvID7JSz04FPGmP2ebRVUcJGE4PiK7/uY3t50usvAl/DztG7E/hPIPGUEsaYbfEJ3G/DzrE7BngH+JIx5qGk4+pF5EjsnN3/Fj+uEfifnNkoSg7RqT0VJQURuQD4JTBXe0crPqJtDIqiKEovNDEoiqIovdBbSYqiKEovtMagKIqi9EITg6IoitILTQyKoihKLzQxKIqiKL3QxKAoiqL04v8D7cjX1xi9cVMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -523,7 +523,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEQCAYAAACugzM1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABFqUlEQVR4nO2df3RdV3Xnv0eyFNsyIfZLm6AklinpKg3TJtShU4ahDTWUNlAo/UFZFTSEH27kaSeU0ulQt2mAmNLCKmSVARIG4hBpSltgmHbqmULDj7YpMEhBcaIoCAVZRlFQZMtR5MiynqU9f9x3rfuuzu9777s/3v6sdZb07rv33HPPO/fsc87eZ29BRGAYhmEYFR15F4BhGIYpNiwoGIZhGC0sKBiGYRgtLCgYhmEYLSwoGIZhGC1b8i5AFlx88cW0Z8+evIvBMAxTKkZGRk4Q0Q/Ej1dSUOzZswfDw8N5F6MyPProo3jOc56TdzHaEq77fGjXehdCTMuO89ITY2TXrl15F6Ft4brPB673ZlhQMEaWl5fzLkLbwnWfD1zvzbCgYIx0dHAzyQuu+3zgem8ms9oQQlwuhPhLIcTXhBDLQggSQuyxvHarEOL9QojHhRBnGnn8dFZlZfR0dXXlXYS2hes+H7jem8lSbF4J4LUATgH4F8drPwHgrQBuAfBKAI8D+EchxDVpFpCx4/Tp03kXoW3hus8HrvdmshQU/0xElxDR9QD+1vYiIcTVAH4DwO8S0ceJ6F4EAuc4gHdnU9RyMDQE7NkDdHQEf4eGWnPfiy++uDU3ypkDB4AtWwAhgr8HDqjPVf0Wtr9ReJ4Qzamjo/m+Raj7vNpdGmXx/Z2KUO+FgogyTwDeAoAA7LE4948BrALYHjv+LgBnAVxgymPv3r1UNQYHibZvJwI20vbtwfGsGR8fz/4mKTM4SFSrbdRVraavq337mus2TN3dm6+T/RZdXUQ9PZuvj/9GAwNEQsjvFU1XXRWcL6v7wUGivr4gn74+/XMNDBB1dgZ5CkG0ZUvzfXbs0OeTZ7tLWhbV+QMD5nzK2ObTAMAwyfpl2cG0k6Og+DSAb0uOv7aRx/NMeVRNUAwObrzs8dTXt/lc207E9pp6vZ7Kc7SKwcGg47bp9MPzdZ12V1dwTlhPpk4+njo7g2sHBtyv3b17vanMLp2l6/1k+USFra7dtQJV3UfLEm3LqnfG5l0qW5tPizIJii8A+Lrk+EsbebxYcd1+AMMAhnt7e2l+fp5mZ2dpZmaGFhYWaHJykpaXl2lsbIzW1tZoZGSEiIiGh4eJiGhkZITW1tZobGyMlpeXaXJykhYWFmhmZoZmZ2dpfn6epqamaGlpicbHx6ler9Po6GhTHuHfo0eP0srKCk1MTNDi4iJNT0/T3Nwczc3N0fT0NC0uLtLExAStrKzQ0aNHpXmMjo5SvV6nP//zGeruXle+3EKsn3+m22777qZOpLt7nZ75zDoJsU69vat0xx1LTc/0wQ8+Qdu2Nee/fTvRe97z6PnyjI6OpvpM4+PjtLS0RFNTU5n8TpddVlfWV1/f5t/poovU528IizXnTj6agjpW/46maz/4wSdoaWmJentXpedceunKprbX2el+v76+5ranLvN6y98nIeRlEWKdJiYm6PDhVdq61eZ3UucTPtO3vvWt0vQRab5PZRIUXwTwNcnxl+kERTRVaUahGtHJRkE2o934qNFmlFY2dEs7Qmw+P4kAaFUKfw/Vs6X1XNF8dO2pszOLX06Pqa36zPaq0ubTQiUoimgsvABAti1yZ+T7tuHkSfV327cDhw5tfD5+3Jzf8jJw8KD5mujxkZERc8YFYvduv++KTPh7qMovO97Z6X6faD669rS25p53Ug4dCtp8lOg7YNP+Q4RQ5wOUr81nTREFxRiAZwshYk0CVyFQck+2vkjF5M47gf7+jc+2nWD0hbLpePbu3eteuBw5dAiQmcF3dzd3BiG1WvZlSkr4e5g6yyjXXed2j3g+Oi8WfX1ueafFtm0b/9dqze+AyyCAKHgGIYK/YT6hNdQLXrA3dwuvQiGbZqSd4Lb0dE3j3Bsix7YAGAfw9zb3a4elp1pt87kyRadpim2jHA3XM8tE3Lpoxw69dUzeS0um5aC4QtvGYMFlKUaWj27Zs9VWTzbtVHaOaqlOtsxUJAuvvEAeOgoAv9pIH210/gONzz/T+L4PwDkAt8Su+zSCjXpvAbAPwGcArAD4CZv7VklQyCx4Qisc1flhJ1Krbb42NA+MdjTxz2V/MXzqrKMjf4GgSgMDfvVgY4YLBKbBrte3CpOlmcnqz8YUNqSK+jpX8hIUpEhfaXy/p/H51th12wD8BYDvNwTENwBcZ3vfKgkKIj+TV9W1Li9OSGh1URZcZ2EyU1pT6unZMJmN701IM110kb+ZpsuMwuX6VnWcNjNkmRJflo/N++NiKFBVchEUeaWqCYo08Xn5V1ZWWlW8VHDpEE1WZarku6fCJXV1ER0+vOpdD7ab+1SCQtVRmzYvpoVN/aYptPIWjEVAJSiKqMxmMsTGymnzdw7mJCVDZ1WmoqMD2L8fmJaGeEmPtTXgxhu3YM+ewK2Hq+uKu+8Oujpf+vsDJW9c2X/yZPD8WSt6Tc1OpcT3xcVQoO2QSY+yp3aeUZim2T6jpsXFxewKnAG2I+eiK7F1ybRc6DLbMe2JyGukbdJNZDGr2Xh/1iuhr3MFvPRUfWyWCnwsO6anp1vzAClhq6PIeuko66TrqF3yUbk2Cclr7T5PK6Sytfm0YEHRBug6vugL5qocn5uby7jk6WJr9WS7fh/vVH31Glkk2W84OOj+bDqhk+fafRJDjiSUrc2nBQuKNsDUOZhebNVLWcaXxqaD8ZlRhLMzW6+krUrRgYDPc+lmB+24v6CMbT4NWFC0AaYOwrczqOo03EdHEdahShDlqfcIvdT6zJR8BxFFJkmZq9rmTbCgaANMdue+ywtlU2a74LqMZLPckoXuI7opUnfe9u3uz2TSUZSRpLOgKrd5HSpBweaxFUJlzgiYzfx0ZrNzc3PpFLCF2EZCu+QS+zxtTSVlZpZJ+chHgGPHgPV1vZ+l5WXg1Cm5rysVz3hGs8+wKEWKbufCwYNBXUSJO8TUUcY2nyky6VH21K4ziiiu027djKJsG+5sR5Ouy0QuQaDSnE309JifTzZLkEXckyXVkmSZdRNJLbXK1ubTArz0xOjQdQplc+Gh6qjDNXzTeaokw+RbK60ks2xSRWrzydulHsuwUzlp2cvW5tOCBQVjpIwKSxm6dfzoiNhF6dvRsfk+tt5600o23lJdU9wzrU09lsH3UZlnQ3nCgqIkFLGzLpubcdNMIRxVuih948s/NvfJIsm8pSadWbjWY5FnFPEZXq3m9y6Vrc2nBQuKEuDqHpuRYxpphyPiHTvsO9PoKLoVDgFtymH7vLoUX46L59vd3Xx+kS2k8nZiWAVUgoKtngrEzTcD9XrzsXo9OJ4nZQsLGVp/qUKBhpHQTp+2zzO8ZmioNQ4BTeWIEj5vGLHNJQTq2prewV885GkeIVBtkVk6AX5ODMvW5jNHJj3Knso6o/BZHmDUmNapbUfd0VmdaSaRpYsP2zV2VaS3ffvUAZpky0kucT2KQFLPBAzPKJgEPPDAA3kXwYv4SDsaGxmwi5UtBHDXXRvX6Fxf9/UBn/wkcOIEMDiY/l6KG25Q73eIInvue+4Bbrwx2IchQ/ZcKhfsPq7ZW4EpZratt/yhIaC3d7V0e0cyRSY9yp7KOqMo6giuXvePspYXNkYBNiFQ4+vbLgpeH3ceumBDSd1suIQUJdKXs4gk8Uygy6OdrKXAyuziU1Tl4fj4eL4FcMTlZR8cNC8VxT3vunQkPns1VN8lddynW5qRlb+oAxcdqt/TtrMvo6VXmrCgKAlFNI9dWlrKuwhOJHnZba51+Y1cZhVhB+xTfptrVB2/zPQ3LLtsA2EZrIh836My7x1JAxYUjDdTU1N5F8GJJC+7z2jehI1yOzpz9Fn+sHlmH0GhuqaqyzE8o2BlNuPJjh078i6CEyqlpknZOTQUKH99ro3mEXeid/vtcsX2jh0byuZPfnJDUd2sjKZNSniX8u3evVEmlRL66ac3K2xDM2DVNS4O9soEx82Ww4KCMVKPb+4oOL4v+8GDwfgxjhB2HUV0jwVR8Hf/fuC++4Bt2zbOq9UCq6iPfQzYtSs47/WvBy6+2N/CRvXM119vt+8j3umr9iREsbUiKhOhkL7ssnNSS7m2RTbNKHvipad0mZmZybsIzvisUeuUvUk88MqWbQYG5Ov/3d3ySHk2Sz2yZ7YtU3xpzcYPVpWXY8rY5tMArKNgfBV8CwsLWRYrN6IdqY2/JF89gWtSlcWnY7a9544dzdeZBExRdRRpGYNUtc2bYEHR5iSxD5+cnMy+gBmhC1nq4x/Jx/IorWSjUI8/r4vwMnmmDfMqijVenDT3QJS5zSeBBUWbk8SaY3l5OeviZYKu4/Dt1E17GfKcUSR1Oy7zTFs0U20daVoslbXNJ0UlKFiZ3SboQp2amJqaSrcwLUIXDtPXqZ/O+qm/384tiIn9+zcrpoUIFNM6bBTQOuJtob9/I/zqsWPFV+gmaeNxVG2+rKFhk8KCok3wNRkFgOc+97npFqZF6DoOFw+rITaWUypTWFtqtSA+9g03NJvqEgF3363vmJJaIdmaABeVJG08jqzNq6za2kFYsKBoE5LYh4+OjmZSpqzZtUt93NVddq1mZyYZ3QPhSldXIGgA4MiRoDOKYtq7kKSjr8JegTT3QMjavG6GWnlk61FlT6yjkFO2Neek6HwV2boC1wX28b2/KkV3Z/vsLtcpoE16F5UfrLK1lyzL3A7uPcDKbMaXsoaF1L3Ytp14kk7Ax1w2VLz6KmbjHaVsT4YsyfIpihfVPASWrM23g3sPFhRM26F7sW078c5O/w7Kx7IqFExpdtQ21lgudddKiiawilKWrGBBwXgzMjKSdxG80Llt9+nEXV2+Dwy43yPupfbSS1dSGUnrnlfmNrwoyyx5CSxVmy/jcpwLKkHBymzGyDXXXJN3Ebwhkn+WKT6jyJwDrq5ujl+uM5c8csStrHHFa38/8NhjXUrzVBdTTZ1preznTdOCKAlpmry6oGrzZTMZTg2Z9Ch74hlFuoyNjeVdBC9Mo9GBgY3NbZ2dQUxpG91FiGkpwmZ5K4ywFyrY4yNVVd2nHUApPjouyjJLXjOKsrb5pICXnhhfyrpLVbd8kmQXc4iuEzOFWY0G/9F1yqq6d+1AbYRWXBDkvcySNFpdkvteccVaZZeXdLCgYLwpq98bXWfq68Ijup6v63x1QmjrVvtyqure5Ok23snZPm9RLHhUgjzr6HpFmUnlRS6CAsAVAD4DYBHAUwA+B2C35bWkSNeYrmVBkS5l9aSpe+l9TFc7Opo7DFXna+OJNopu5qOqe9W943mFz2ua4USvLwJ5LTkVxdorL1SCIjNlthBiO4AvAXgugBsAvAHADwP4shCixzKbwwBeGEsTqReW0bKcxIFQjjRHimsOQpOGUla1E9hm13dU+azbQa6qe9m9hQi6tSjhzuH+fuBTnwJ6DG9evF7y8m2UlxI7r/sWHpn0SCMBuBnAGoArI8eeDeAcgLdbXE8AbvO5N88o0mV2djbvIqSOr47CZh3fJYCRLi51raav+/i9TUtK4Xmq+8V3aOe5DMMzinxAq5eeANwL4D7J8a8C+KrF9SwoCsL8/HzeRcgE2S5mG6unNN19mzb/XX75OWulqu1yVFfX5v0lQgTPH0VVF63oNPMSUqyjaL2g+D6AOyTHPwJg3uJ6AnASwFkAywiWsV5sc++qCIq8rU5Cpqam8rlxTpg6etsAQjZCRzcbUOkb4vcJ20itJhcAqtmKrm3pdnO3So+RV/sfHCS67LJ67u9dHuQhKFYBvE9y/DYA5yyuvwfArwN4MYDXA3gAQB3AdYrz9wMYBjDc29tL8/PzNDs7SzMzM7SwsECTk5O0vLxMY2NjtLa2dn7nZejTZWRkhNbW1mhsbIyWl5dpcnKSFhYWaGZmhmZnZ2l+fp6mpqZoaWmJxsfHqV6v0+joaFMe4d+jR4/SysoKTUxM0OLiIk1PT9Pc3BzNzc3R9PQ0LS4u0sTEBK2srNDRo0elebz3vcdo+/b1phd027Z1+vCHF1r+TEtLS6k80+joKNXrdRofH6elpSWampoq7O90++3z1Nm5Lu0o+/rUz/TBDz7RmAWsK6+P53Xbbd/d9FsLIb+2t3f1/DMNDhJt3Xqu6fuOjjXq6FgnILy/qgzr9KxnnSUhgt3fg4PNz7R7t7rsl19+rjC/U1Ztb3FxsXLPZPM75SUo/lRy/JCNoJBc9wwA0wD+1XRuFWYURVorHR8fb/1NC4DrMoSr3iOqE3CZgYTY6EJ0FlW659Ith7XDCLtd27xKUGTpwuMUAJk9x87Gd04Q0RKAfwDwgoTlKgVFsr648sorW3/TAqCzmpLhEmFOCOCmm5rzOnPGfF3UQsqmLRBtdkeis44KUVmF1Wrt4baiXdu8iiwFxRiA50mOXwXgYc88BQLdReUpiq8dABgbG2v9TVNCZ9554ACwZUvQcW7ZEnyO4+Lbx0WIEwW+oMLy+IQxtW0LRM3CLi4kQqLlP3QoCKQUJRpYqeqUuc1nQZaC4u8A/JQQ4ofCA0KIPQBe1PjOCSHEhQBeAeAbaRWwyKQZrcuVeOf60ENXZ3/TDNCFrjxwAPjoRzf2PKytBZ9lwsIWVcctczAIbJTnwAH7GN4LCxv/mxwbhvT1NQs7VfS9ePllM5F24eqry9nmM0O2HpVGAtADYBLAgwBeDeBVCBTS3wWwI3JeH4K9FbdEjr0DwMcB/AaA6xBs2HsQgd7DaPlUBR0FUT5WH7J19q1bz5VyXVqn51Htnu7s9L+fSqdh0j247BKP66jiVk9dXZvvPzBgDmYU11EUSUeWB2UN1pUU5OTCYzeAzyJw37EE4PMA9sTO2YNgOenWyLFfBHAfgBMILJ1OIpiF/KTNfasiKPKgSh2ErSI3nqK4CmvZ+bZCwCbF9zqo7h8KPZXiOi484s9VlHgUTGvJRVDklVhQ+FOlDiLpjCKNzVdpCwobgW1jfWXaR1HkAUMrZto8o2BBwWgocgfhiq6jV0Wfi47Yk9aFTYft45zQhG08cJ0ALOoO5aKWqyqwoGCskOso1kr7IupGn/HARfFlnaSzK1OHHd4zrlfo6rL3xyR73rRmK7LATnl7CmjVQCbc5NZusKBgrIl3rocPr+ZdpMyQCRKTYz/b5R+bEbwqrvfAgFpQ6e7vG2cjLgBtZkN5jORbtTS6srKSboYlgQUF483ExETeRcgEWWfY1WUOSGTTOeo67M5Oc0Ah3fW6TtFXSMQFUFEDHbVqRlHVNm9CJSiy3EfBVIRLLrkk7yJkgmyTW70edD0yTDuzo+g2391990Yeuh34tvsdQoaG1HsdajX9Poj4Hh3bfR2t9hTQqv1FVW3zvrCgKDB5BY2J8+STT+Zz44xx7eRMO7OjqDrzHTsCARX+pqoNc7t3A9dfD0DiiCA4vpmbb5YLOSGCHdWqMnV2bhaAnZ3yc2XlbCWublV8qWqb90Y2zSh7qsLSU5GsO+bm5lp/0xbgup7vgm9gpHD5S6cnkS2zmHQiqjKp2pRNOatsbVTVNm8CrKMoF0UyU63qS+PSmfsoS209wsZTrRZc7yK0bJXvtnsQdPHA2yFOQ1XbvAmVoOClp4JSJO+xKysrrb9pC4guY5gQwn3pr78/WGpy5eTJ4F665Z94WXTt4vTpjaUuwM7JoUoXcPfddg4Sy05V27wvLCgKSpG8x1500UWtv2mLCL3DDg7qHeytrze74bbFV7Dv37/hsFD1fVRY6NrFyZPBfCDqFNGETBdwww3N+pW8dGatoMpt3gcWFAUlT++xcebm5lp/0wyRGQnYzC6mp907R1/Bvrysn1HE40fI2ovMyil+nY6oi/VDh4LZhMwTbxWpWptPjGw9quypCjoKouLEzC775iMbD6s2nlNdFLhRZXR8X0b4OfTkqtNFdHerQ5LG9Sbx9pKmvqVIOrNWUPY27wtYR1E+XILmZMnExEQ+N06BeEyKkyeDvRJRbEbnqnNlHDgAvOENG3sRiDZG9319wD33BMeOHQM+8hH1LKZWA9bXSXkf02ylVvO7TkaRdGatoMxtPhNk0qPsqSozCiY5LiawUX9POnNT3Yh8cNDd9YZPHIvubrMTv+5uu/gUSXaaV3VG0a6AZxSMLyMjI3kXwZq4/sF2hzHQHOWuv999ZzQQzDZIMQlQlUW1iSwazS5O/B6yXearq8CFF25WSPvoGoqkM2sFZWrzLUEmPcqeeEbRnshG1T5uvMOYFD6bHnX3c42eZ5oNRUfzts7ykswMXHRmRdGvMW6AN9wxvpQliIuqE4x3ot3d5o1wskhxNh2eqXN3DXq0des5bX6m+8YFgE1eSSmSVwFfytLm04YFBVN5dKN52ehWFeWuo8Pc0alGzDodhU+HOTioLmc0NoVKR1GrNZcxi1jhcVifUV5YUDDejI6O5l0EK1w7KJVpak+PPh/TiHnfPrWgcF/mWdfOflTuOVRmwK2YUVQhnG5Z2nzasKAoAUVd163X63kXwQqfJQ9ZlDtTR2cSSKblJ5PVlIt/KFVeOl9NWY/2qzCjKEubTxsWFAWnyOu64+PjeRfBmjSEramjMwkSkwLdxUzWlFR5mZa/smxnRW7LtpSpzacJC4qCU+RR2NLSUt5FyASVUFEtSYV7LJLMKHQdpk8YU9e8wuf0UdS7UNTZsS1VbfMmWFAUnCKv605NTeVdhNTRjXp1HfbAgHnEPDi4WT8ABLoPX9Na17ZhU8ayj/qzpIpt3gaVoOANdwWhSN5i4+zw8ZVdcGQb1EL3HDq3FB/9KHDfffooa3fdtdlNCCA/FsX1t77pJv3327Zt/F+rNZdR9/xMNdt8ImTSo+ypjDOKvEd4uqWC2dnZ1hSiBZhmDCaHeuFyjQqTkz/dUqJcR6F2Cii7t0pZHW9Lphls2ZeOklKlNu8CeOmp+OT1cpqE1MzMTGsKkjE2yuKw3n1NSTs69NeZlhLjJq4qQREXOCYBFb/GpMNo92WpqrR5V1hQMEpMytmFhYU8i5capplCGKuayC4GtQxTZx2GOU1a3lCxHqKaSajK7aOjKYJhRauoSpt3RSUoWEfBGF1IL+i805UIk0vsCy/cWMPPyqX7U0/ZB/vRlffuu5vz0UXDC4kGQlI5Iuzvbz+X4jKq0ubTggUFY1Sk9/b2tq4wCZFFrwsxKYvjfYPKe6wuCt4FF+jvUa/bK4x15Y0rnnXR8ELiwkQV76TIhhWtokxtvhWwoGCMLqSnpqZaXygP4kGK4i60dQGJgOaO8MAB+Qja5FrbxljGdmR+6BCwZcu6VT7795vz0wm4qIA9fRro7m7+vsouxWWUpc23DNl6VNkT6yjc0SnS19bW8iqWEzZr6yoXGVFlrUoxvGOHWaFrsxfCZa2/VlNbPckU2rZWT1Fk+oqurs0OBduJsrT5tAErsxlfRkZG8i6CFS6bFnWCMYmHVZvd1S6drhBqQZEkHkT0exf/T+1iNluWNp82KkEhgu+qxbXXXkvDw8N5F4NpMaqIdn19wRq8LWF8axmm1+XAgWBTnoqenmBpxxbVM9VqwIkT9vlEGRoC3vSmIAKeDiEC/UX0uv37mzfqbd/evJGPKTdCiBEiujZ+nHUUjJGyhIVU6SBOn7a3NALUimEbhfGRI+rvurqAO+6wLwcAvOAFc5sE1/btwO23u+UT5eabzUIC2Ky8bqfd3GVp862CBUXG6KxwysLevXvzLoIVoclnrdZ8/ORJdVxo2e+jUgzbKIx1iuq77nIbeQ8NAUeOXNI0ixEiiHudZAR/8qT5nO7uQMBG66WdzGbL0uZbhmw9quypKDqKquxwLdt6re2GMd3vE1UMd3QEDv1k6/LxNXtVLAmfzWqq57DdtKfSJ+j0J7qgR2k+W9EpW5tPC+ShzAZwBYDPAFgE8BSAzwHYbXntVgDvB/A4gDMAvgbgp22uLYqgqMoO17JZgJhCooYdpq2VlEqYqMKPyjpZn8GB7jlM+ck82IY7z3X56uqlVqvGwMeGsrX5tGi5oACwHcB3ADwE4JcAvBrAgwAeBdBjcf0QgCcBvBXAvoaQOQPgGtO1RREURXYd7sLY2FjeRXDCZHkUdm66UbUpr74+fYeahmWQ7jlMgw3V6N8UPU8nSMIY3e1g9VS2Np8WeQiKmwGsAbgycuzZAM4BeLvh2qsBEIAbI8e2APg2gL8z3bsogqJsMwpVJ7C8vJxnsZyxceoX7hEw/T66TjMtc1zdc6icApoGG7pnNwmgorTbPIVS2dp8WuQhKO4FcJ/k+FcBfNVw7R8DWAWwPXb8XQDOArhAd31RBEWZdBS6sk5OTuZdPGdM7sR1s4no7+M7o4iXxbcd7Nx5zqvTNs0aTM+fd7vNuwxlbPNpkIeg+D6AOyTHPwJg3nDtpwF8W3L8tY2ZxvN01xdFUBCVZ6qu6xDL7EnTR1hEMekoZJHsurvthY2JN73pzKaZi02HqVtiUu1Oj5Yp73ab96ymzG0+CXkIilUA75Mcvw3AOcO1XwDwdcnxlzYExYsl3+0HMAxguLe3l+bn52l2dpZmZmZoYWGBJicnaXl5mcbGxmhtbe28VcPw8DARBVYOa2trNDY2RsvLyzQ5OUkLCws0MzNDs7OzND8/T1NTU7S0tETj4+NUr9dpdHS0KY/w79GjR2llZYUmJiZocXGRpqenaW5ujubm5mh6epoWFxdpYmKCVlZW6OjRo9I8RkdHqV6v0/j4OC0tLdHU1FSmz6TaASzEOs3MzJTumT7xiTPU27tKwdJN87Nt3XpO2VFefvm5Tc90+PAqPetZZ0kIoksvXaHBwY3yXHRRXZrPZZfVzz+Trm51z/SXf3mStm5di123TjfdtGZsex/4wOym5w5Tb+8q7d9fl9bL4GDr257sfVIv6623pO1973vfa8s+Ii9B8aeS44csBMUXAXxNcvxlKkERTUWaUZQF3QiubNG+ZLOAsOMJR8dpLW3Y6Cl8R8dJR9W6WZNMh7Nvn9uzZ0neM4qytfm0UAmKLDfcnQKwS3J8Z+M7HQuaa8PvmRTReZDt6urKp1CeyHYQE2248ujv18djiGLaMGnjktvknVdFkg1uQ0NqVySdnZvrBwC+9KXibAj1rbO0KFubzxyZ9EgjAfgSgH+VHP8KzMrsWyBXZt+KEimzy4ZqXXpqairHUtljEw/bNT/TrMN2ZuKz5p9kVK261uTdtkgWeXnqScrS5tMGOSw9vQ2BKewPRY7tAVAH8HuGa69BsMR0Q+TYFgDjAP7edG8WFOmytLSUdxGM2MbDjp5v6oRcdnin0aHF8xkYINq2rVmPYLs8Ztp0aBKmeSuz86YMbT4L8hAUPQAmEWyyezWAVwF4AMB3AeyInNfXECi3xK7/NIIlqrcg2HD3GQArAH7CdG8WFOkyPj6edxGM2G6yI7KfBbRyw6SqTK973UmvDlsn5HTmseH3eZvH5k0Z2nwWtFxQBPfEbgCfReC+YwnA5wHsiZ2zpzF7uDV2fBuAv0BgZrsC4BsArrO5LwuKdKnX63kXwYit2w4idSfa2dl83o4dakGR9khbVabdu9e98jOZ9cpiUIRmvXkrkotAGdp8FuQiKPJKRRUUZZ3OhyZ+Rcalc9MJlejI2SZaXVojbZ05qA2ytqVqb6aNglVxPZOEMrT5LFAJCnYz3iJM8ZyLzNVXX513EYzorGSGhoCLLw6sgMKkIhpfgch837TiMaitpzSFbaBqW/fdJz9fZTW1sGAqi7EolaEMbb6lyKRH2VMRZxRlm85HR6PhJrOioxpVy3ZP61I4cu7ocDs/adllS0Xvec+j2ucjst99bru0xDqKjQ1p7QZ46SlfyjSdr1JH4ePCI+yEVbGkdcI+yfKi7lrdb+LybLWa3e8bjcfR2Rl8ZqoPC4qcKdOMokxlNWGjZ5B1mLYCxseaSoVMUIQjW91vYivQwqS6V7QcVRko+MIzChYUuVCml69Msx8TLjOKcLRNZCdgoufr7mUjYFXtY2DAvO/BRUiEgiJ637jAqNJAgXGDBUUBKIvVU1E6ijTqy0VHEX0+GwETr48kAlZ9P7ljv2gZXIVhtG5kwkknlNqF0BFfu8GCgrGmCLOfNMswOBjEvDZ1otGO0Gand7zjtI1PIcNnZhAqp2Vl7eranGd8n4huP0kRBgp5srKykncRcoEFBeNEdDTf27taiXgEujgMsrx9zu/u3nxeGKva53lNKVQyy9x/xGdSHR0bkf1M9/OJgVElJiYm8i5CLrCgYLxZXFxs+T2z0pPonOXFO8KBAXU5VJ2/KSCQCh8z3riwsHlOnyRE+1k95dHmi4BKUPCGO8bIk08+2fJ7ZrXpS7XZjKjZxfjQEPCxjwXHZag27Z086XZfmzxN3Hmn3/1sIQKOHEkvvzKQR5svMiwoGCNbt25t+T2zikegEjR9fc2fDx5UCwkAWF3dvCNbFwPCJOAOHgzy9GFtbXPMjLR3UacpeMpAHm2+yLCgYAqJbWAhV2wFkE3HGD/n5pvlwkUI/yBFtsTdd1x/PZBm7J12ct/BbIYFBWNkZWUll/v29wcR6dbXNyLTpZGnjQCy6Rij5wwNqZed4sta0WvCmUBHim/i8nKwVHThhfrzVLOf+PFWRpYrCnm1+aLCgoIxctFFF+VdhNQYGgqWeY4fDzr6Q4fknbhs5hGlq6u589Q5Bowva4XliDryW1vbfE53N7Br1zqECMKXunD8+IaTPxU33SSfXd10U/ozubJRpTafCjINd9kTWz2lS1VMBV33ZphceUQtgXT7IFyi53V2Nm8wDOvedZ+FaSNe1AGgbFNjWTaHZkVV2rwrYPNYxpeqbD7y2Zuhcw4YNalV5d3TI8/X1vw3rHuV2W2tpg9Q5LOvowgbLvMmaZsvq6BlQcF4UxV3Bq57M2z2NkRH5rJzw93TcWyF1tGjR2lwkGjLFnWHb3LwFxUycf9UMvJ24VKETjZJmy+zoGVBwXhThBc3DVw7QN2ubJmQcdls59KZqPLdsSN5nch+2zydQpa5kw3JW9AmgQUF48XgINHWredK/eKGuHZCJiERjtBDfGYsJgE8PDysvX88v6hPq44O/Y5qVX2o/GK1oqMrSiebxM14mb0vs6BgvCjKi5sWLrMjG0ERXf5R6TJsnALqsBEUg4PqiHwqYeHi5kO1hJY2Ze5kQ8r8zrCgYLyowovri83SUygIdJ5mdcpjk+AaHh7WKrJtytrZKb+3iyVVUmFnS1E62SQzijIvn7GgYLwoyoubNjYzC5XVkE9KoqeQKcqjwscmHKoMV8eBrdBPlbmTjVJWvR4LCsaLQEexVvoXN4pLZxR94V1DjppmYDZCeHR0dFM54h2PqcNXzShk9WCaZbTity9CJxvWexoU4XlsYUHBePOpT50rZEP3fQF9Z0kqAWOzRBUNM2qKBxEVKvV63fg8ps7dpNCOx7EwBWwq+2zSBpt6t6FsMyQWFIw34+PjeRdhE0lewCR6F5lwMkXD6+6264BlHbGq7m1nOj5xJEw70ttBP5VWmy/b0i0LCsabpaWlvIuwiSQvoI1y2BVd59rVZa8Yj1sXhXVvirYnSx0dyUauZevk0iStNl82YxCVoGCngCkS9QYaxgWoAidOnABQrOdTueXOOm6Cqg76+wMngTLnffW62rNsnGc8o9kB34kTJzA0BNx4o30eIevrgetzX7KKCVIGwjaflKwCcLUcmfQoe8pjRlG2tUgX5ufnC/d8SUa7vqM8XR2Ylp9sU7wM8/PzicOaJtErqZbaiqizSpP5+flU8inae2MCvPSULVWeps/Ozhbu+ZK8gC5LTza6AJOn1jBvG0ESL8Ps7Kyz51hZSqtzKlvH58vs7GxqeZVJsLKgyJiyrUW6MDMzU8jnc3kBo+eqOtO4p1fbWYIQdpZHNvsd4oJiZmYm8YwiTaFetAFDVszMzORdhFxQCQoRfFctrr32WhoeHm7pPffsCYLQxOnrC6KzlZlTp07h+c/fWdrnC4MELS+bz42+DhdfbKcXCAMTyeonpKcHOH1a3U5ChAh0CyGnTp3CkSM7ceONga5Dlfdv/ibwiU/o427H8/aho6O5jtLMu0icOnUKO3fuzLsYLUcIMUJE18aPszI7Jaqs+FtYWCj18x08aCckouhCm0YJ68AUEe/pp4O/pvPiSs6FhQX09wN33aUOXbq8DLzoRcCb36w+R5a3D5VRzhpYMIUHbDdk04yyp7zMY8u0FunC8vIyEZX3+WzX+KPLPrrlnngUuhDT0lL0PJmeRLbWH9a96TlMehLWUbgRrfd2AqyjYHwZGxvLuwiJsNl/EN+/4Bra1LRJraNDfY1O8Ebr3rQJzrXMvpR1wOBC2du8LywoGG/W1tbyLoI3Ksd+nZ2BAFF1dqpOOZx1RDvLWs3sPHDfvs3X2XSy0brXBRXSzSiiiuZ4uXV10M6Uuc0ngQUF483IyEjeRfDG1OGrSHvPRNgRuy7bxOt+YGCzsNCVK5q/Tbl7eszCox1mFGVu80louaBAoCh/J4BjAFYAPADgVyyvPQyAJOlDNtezoGBC0vbrROTunju8X1qmpbqOOomXWVmKC7J20VG0KypBkZl5rBDiEIB3ADgIYATA6wC8FcArieiI4drDAK4H8KrYV48Tkca4MCAP89gqMzIygr179+ZdDC+yMFtWmYjq6OsL3IvIrtOZlqZZ9z7lBprrqspm4FHK3OaT0FLzWCHEDyIQEu8jog8Q0ZeJ6LcAfBnA+yyzWSWir8eSUUgw6VPmFyYLs15XU9Dwfj6mpY88sjc1/1q+JqxRwZCXj61WU+Y2nwVZ7aN4OYBuAIOx44MAfkwI8eyM7stkwP333593Ebzp7wfuvDMY8QoR/L3zzuA73w5YJny6uoBaLbhHrbbxf3i/0Gmgi9AaGgLe8pY1TE8HM4HpaeANbwjy9REapj0cKoTYuFe77KMoc5vPBNl6VNKEYNawAgRLW5HjP4lA1/AKw/WHAawCOAHgHIAJAH8AoNPm/qyjSJeyW4DYBOdxXWf3tR5yUQSbdApCuMebiJfbRRkfXt8OOoqyt3lf0EplNoA7AXxfcvzKhqB4g+H6twH4HQA/i0BX8XEA6wD+u+aa/QCGAQz39vbS/Pw8zc7O0szMDC0sLNDk5CQtLy/T2NgYra2tnbdqCIOoj4yM0NraGo2NjdHy8jJNTk7SwsICzczM0OzsLM3Pz9PU1BQtLS3R+Pg41ev18+ESwzzCv0ePHqWVlRWamJigxcVFmp6eprm5OZqbm6Pp6WlaXFykiYkJWllZoaNHj0rzGB0dpXq9TuPj47S0tERTU1O5PdPY2Fgpn+nP/3yGdu1aJ2A91vHFPwfpssvqm57pAx+Ypd2710mIdarViJ75zFUSgujSS1docJDove89Rtu3N+e3bds6ffjDC4mfSQh5OePPMjjo3/ZsFdxCrJ//ne64Y4l6e1dJiHV61rPO0j33VO99euihhyr3TDZtL5GgAPBSyK2Q4ukrjfM/jkDxHM/nh20EhaIMH2xc+8Omc3lGkS5l3KUqMyO1sUyKYhO5TjUqz9IBX5r3sjX1rZrTPxNlbPNpoBIUtjqKfwPwoxbpNxvnLwDYKcQmzzM7I9+78leNv5s08ky2zM7O5l0EJ4aGgI99zN3CJ77ObvIRtbqq9geVhnL3+uuBYGykJ8m94jqcWi3Qt0Qpi0+vNClbm88aK0FBRMtE9IhFCpvsGIALADwnltVVjb8Pe5Q1FDqOr39+FCkiXBJ27dqVdxGcOHjQXUh0dwcdc/T30nl5NZFUuTs0BNx9N7DR7NV0dCRrW/39gWnr+jpw4kTggDCu/I9G3atKu9ZRtjafObJpRtIE4AcBnAXwJ7Hj/wTgQc88b0egp3iO6dwiLD1VSelXFt/8Jn9L0SWjjo7mYx0dm91w2C5dZfE7u26Oa1XbqlK71lGWNp82yGFndmj59HYA1wH4aKOj/8XYefcCmIx87gPwzwAOAPg5AL8I4JONaz9qc+8iCIoqBXhJM9pXVtiute/Y4aa7MJ3b05ONSwufqHZp7vBWUaV2raMMbT4L8hAUnQD+CMB0Y3ZxFMCvSs77CoBjkc+7AHy+cd0KgDMA7gfw2wA6bO5dBEFRxIhwvqQVPzhLbExJ9+3zi2utCoEKmH1GZfU8SduW78xAd/8qUYY2nwUqQZFZ4CIiWiOi24ioj4guIKIfJ6LPSM67joj2RD4vENEvNa7bSkTbiOgniOjDRFSaGFpV2ph0+vTpvItgRKfQ7esD7rkHmJx0D2AkBLC2pv5+YWFjzV4IoLMz+CtEECHPd/3eZ3NcfFldp0uQKeqXl4PjOjo73Y6XlTK0+VbCEe4yoswR4eJcfPHFeRfBiEoAhz6I+vv9rIOCSa6aXbuCMKuh4jvqs+nkSeDGG+2ERbxTBwIl8hVXrJ9XKu/bZ1/uMPxrdFf3/v0bZfF1xaESmjphWkbK0OZbimyaUfZUhKUnouq4Yx4fHzeek9ezRhXYKvfbIS47kW3S9u12eYb1ofP4qloGita9zXJUuONaF7dCl5dJ19AuOgqbNl800ngHwfEoGF/q9br2+6wtYVQvgOy+YQcpe1FUnfqOHfLy64RAmH8allG6zjda9z4KbpUew/c3axerJ1ObLxpp/S4sKBhvQjcEKrIcZepeANf76gwMZMLI5uWzGeWrlOGdnWZhE617HwW3rm5Uz2walVZlpqzD1OaLRlrvIAsKJjOytPDSvQCu9/V5mQYHm2cWtZp52Siaurr0Hbdp5hJ1+ucyg1Hdy+SwsB1mC1UkrXdQJShYmc0YGRkZ0X6fpYWXTunqel9fA4MzZzb+P3myWSnc3w/ccIPc6qdW29jlrMJkhXXHHXT+//7+4PX3obNz8w7rkFCR/vrX+1lCVRFTmy8amVtZyqRH2RPPKFpLliNR3SzA576uyyamWYhNGXxibEeTTXlMSeWO3KZsZdz7026wjoIFRe6ELol1ZLVubXoBsl4vN03pbb3HDg6qdRVCqO/T0bG+KR8fQaFaXrMRPFWzaLLBps0XDbZ6YkHR1qQtDFzyUwmCUFfhMgrX6Rh27JAfl80ErrrKXVCoZgUmnUfaMzSm2LCgYLwJA6dUAZVJrWpppqdH3oH29OhH46pRuK4jHxjYmHV0dgaf43WvWiqKOzRMY0YRV9zb1GVVlN9VavMusKBgvFlZWcm7CKmh6hhDE9k4plG66jtVZ+lqeRWve13HrhJqqpkJkV5HYer0q7z5rkpt3gWVoGCrJ8bI8TSi8BQE1aMQuVv3qCxKajW5dRHgbnkVr3vdT/H00+rvjhyRHw8DF8mstkwWT75uQMpAldp8GrCgYIxccskleRchNXTmgrK+oVaTn1urqTv9229X3yMeUU4WGChkaAjYt+85TU79fM0ddf1ef7/aV5Puuio5voxTpTafBiwoGCNPPvlk3kVIjUOHgg5ahqyDu/32IPpdlO7u4LhLpx8lGlEudFgYJ3Tq973vdYBow6nf9dcHjgNd0XXeBw64Xzc0BMgcrJbV8WWcKrX5VJCtR5U9sY4iXebm5vIuQqoMDJgdCEbJw62Fbv0/Hp3PxuJJ92w6Xcu+fXauTWyU32Wiam3eFrAym/Glii9NWh173MWHr/WPKh8XBbouqXD1qKtzOVIFJXZIFdu8DSpBwUtPnrRDgPmQlZWVvIuQCtHf7ODBYIlEt/xjk9/+/YFbjzg6RXC87Rw4ALzpTfJ84uzerV46U6FyITI0ZHfPKMvL6muqpP+tSptPDZn0KHvKekZRZftxGYuLi3kXITGDg5v3GnR3J/vNbHY1y8qhco1uM5ofGCDaskX+vWrnt8o0Ng1vtFWdUVShzfsAnlGkh28YybIyNzeXdxESc/PNwOpq87HV1eC4L2FUOxUyk1NZ2yHS5UJNivIjR4Bz5+RnqiyXVKaxvjOAWk2u4K+CEjukCm0+TVhQeFBl+3EZu1ts75jWsl40H9VyycmT/vmb4kTLOm7XNrJ7d/PymE8bU10Tj7FtgxDANddsFlYq4VVWWt3miw4LCg+qbD8uY2JiIpV8bASAKdazy72i+ejwyR8wx4mW6QZc2khXFzAw8D3v60N8BIIKIuDee5tjgwPB5ySzs6KRVpuvDLL1qLIn1lEUD9s68w0uFLdgcl1/d11fN5mVqvQfqnoYGNAHSIpe76o76OqS55VGaFWTToZJnywdMYLNY9OlnbxmpuFy2VYAuEbqUnW8rh2cKeZC/PfWmZX29KTncTVe94OD7vsoVIIwbWV2KCiq8G4U1c141oNUFhRMZth0DLYCwHVGoTpfZQGkSrWa/vlchE+WHaOuczcJkPjvkzSgkurZq74ZL0+ydsTIgoLxRje6SntJyXXEpFs+McWrthUUriPvsExpjKbjdZ/GclG0PgcG9OdedZW9MKnV9HVVpuXZos4osoxPT0QsKLKiCtPsJGQhAFzqVHX/Ws0co8H2RUvSOafdOaa1XBT+Pqb8Qv1J9PcYGFDvSTHVVZX2WuQBzyhSTK0SFO2i1B4dHVV+5zLCyUKoqn4DV9cUnZ3uMSRcO2af543XfVrLReHv4yJU4uUI6yVc5jPpbkwCuUjo2nyesI4ixdQqQVHlwC1R6vW68rsi1IFMAPnMAnQznLTW8kM9gklwbDzT+qZzfZ9P9vvY6HJcDAm6uvQzubK8G7o2nzds9ZRSapWgyHq9sCiMj48rvyvKrMrFKsl19BzmH80zbV1B/F66OvUxkVXllaROdMt+LjHAi4iuzVcZFhQZUITRdCtYWlrSfm8a4diOgHxHSj4j2zRGz2kkmS5HNcq31SvEU0eHul5NM4qurqDjl11req4yvxumNl9VWFBkQFFG01kzNTVlfW68sx8YsKujJHWpG9mGZfHtuMOyuZrb+gimwUG9pVZ4rs9sRoXump6ezcI2+puo6qSzs/yzbZc2XyVYUGREO1g9zc/PW53n4hk13iEnGYHadEo2Hb2tAEszRZ/PtFwWdsCuQktXhz6K+tCU2HRP39+zCNi2+arBgoLxZnZ21uo8l04n7MRN7jZ0S0GhgDYt1RCZ9wuohHwWu5dVgqkV95DVo88MJTSZ1dVlmWfbtm2+arCgYLyZmZmxOs91iUcWI8JmBGozyg87pahAsZ3d+D6TKkU3okVNSeOdZlrCwXXDn+89TMuKZZ5t27b5qsGCgvFmYWHB6jzVCFMVn9q01KIagercdtjEdpaVz/WZXJJtB+lrqeUq/NJ6xqgDRpl7kLIKCSL7Nl81WFAw3kxOTlqdp/OMKus0bDohGUn9RsVTmn6e4qmnx6rqzt/Lx1JLlVzu65O/q6PGMgkL2zbfKloleFlQMN4sLy9bn+vSoH07OVtFqe2ykakzT2r15Grq62qpJUsdHXb3C/F9LhllV2QTubX5rGml4G25oADwdgB/D+BxAATgVsfrfwnAtwCsAJgG8EcAOm2u9REUsg6u7NPntBgbG0t0vcxkVjfa143ww/ySOCL0GX0n7bh9Xuyky14u+DyPaqZYdtNYouRtPk1aKXjzEBTjAL4B4KOuggLAywGsAbgTwEsaQmcFwJ/ZXO8qKGQdT3f3Zpv2sk2f02Jtbc37WtelG1WQHVm+YSdVq8k3hbnc20Qa+gPdi60aqGzfvt4SQWEShD09G7Oqzk6iffvUjgGrMKNI0ubTppWCNw9B0dH4u8VDUHwLwFdjx24BsArgUtP1roLCZeRWpsaeFiMjI97XutRtraYepcpQKcTjljc2swETaSqaw2fVCbTwGW677bveS1G9vXa/kUlH4bLLPXyususokrT5tKn0jOL8DRwFBYArGue/NXb82Y3jN5rycBUULi9hmabPRcClbmUdkq+jPpeNbKalLtfnsE0uI3BfhbONb6WeHn17dxWSYXl52TYdKq2jOH8Dd0Hx843zXyj57mkA7zflwTOKdEkSxCUN81JZnZvyjQp0U3CjJG5C0ng23dJCWPe+9+/sND+b7vpwSc9VUJSdogUuytvqqQPFY1fj7ynJd6ci3zchhNgvhBgWQgw//vjjOHHiBB5//HE89thjOHXqFB599FGcOXMGDz/8MNbX13H//fcDAEZGRnDoELB165pF0Qi33LKCRx55BOfOncMDDzxwPo/o3wcffBBnz57Fd77zHTz11FM4fvw4nnjiCTzxxBM4fvw4nnrqKXznO9/B2bNn8eCDD0rzeOCBB3Du3Dk88sgjOH36NI4dO+b0TABw//33Y319HQ8//DDOnDmDRx99FKdOncJjjz2GsI6OHTuG06dPa59p79693s8kr1uyqOsNjh/f/EzHj+vzuPzy9fPPdOmlq9JzOjoIH/94HT/5k+Znuumm405l3oCge97jx4FLLjkr/a639xx6e3tx4sQJ4/OqWFsj4++kK9/CAqG395z1/S68sA4gvbYH5PM+Pf/5z8/sffJ5pv5+4LOfHcH6evC3vz+bPkKJTHrEE4CXYqPF69JXJNe6zij6G+f/iOS7xwB8wpRHUqsnlSmkzRJFFUm6XiuzenIxN3WdUcSn5WlN3X2Wn/r69GU1ubsI6z7LGYUu1raqfN3dm6+znZ2VgSLpKFoJkiw9AdgO4LkWabfkWldB8QuN81u29BSnCsq4NMnCAsTWNbirjiKqJI6fn3TqbvIXpRJYKq+woY5CV76w7k2eZVXJRkeheq5o1L92Mx8vktVTK0kkKJIkD0Gxu3H+W2LH9zSOp67MllHll8CVrGzKk3Y+efxGstlQaJ4bdq7RkXi0rFGlsEqgxYnWvS6PgYHNMx6XIEEDA80zhJ4ebvPtiEpQiOC77BBCbAFQB/AuIrrV8ppRAKeI6CWRY3+EwER2NxF9X3f9tddeS8PDw95lZpo5c+YMtm3blncx2hKu+3xo13oXQowQ0bXx45kps4UQ1wohfhXALzcOXSWE+NVG2h45714hxGTs8j8E8DNCiDuEENcJIX4Xwc7s201Cgkmf2dnZvIvQtnDd5wPXezNbMsz7twHcEPn8a40EBHsijjX+74yXg4iONITMnwB4I4A5AO8FcCi74jIqdu2SGpoxLYDrPh+43pvJbEZBRG8kIqFIxyLnXUdEeyTXf46IriaiC4hoNxG9m4hsbFiZlFleXs67CG0L130+cL03U8R9FEzB6OjgZpIXXPf5wPXeDNcGY6SrqyvvIrQtXPf5wPXeTOZWT3kghJhH4JqcSYeLAZzIuxBtCtd9PrRrvfcR0Q/ED1ZSUDDpIoQYlpnMMdnDdZ8PXO/N8NITwzAMo4UFBcMwDKOFBQVjw515F6CN4brPB673CKyjYBiGYbTwjIJhGIbRwoKCYRiG0cKCgmlCCNEhhHinEOKYEGJFCPGAEOJXLK89LIQgSfpQxsUuFUKIK4QQnxFCLAohnhJCfE4Isdvy2q1CiPcLIR4XQpwRQnxNCPHTWZe5KiSse1nbJiHENRkXO3eydArIlJP3AHgHgIMARgC8DsDfCiFeSURHLK6fB/Cq2LHH0y1ieWl4Tv4SgLMInGYSgNsAfFkI8eNE9LQhi08AeAWA3wfwXQD/CcA/CiFeSESjmRW8AqRQ9wBwGMAdsWMTaZazkMiCVHBqzwTgBxG8RO+KHb8XwFGL6w8DmMn7OYqcANwMYA3AlZFjzwZwDsDbDddejVjwLgSDvW8D+Lu8n63oKUndN84lALfl/Rx5JF56YqK8HEA3gMHY8UEAPyaEeHbri1Q5XgXg60R0PgYLEU0BuA/Aqy2urQP468i15wB8GsDLhRAXpF/cSpGk7tsaFhRMlOchmFHEA0mNNf5eZZHHDwohTgghzgkhJoQQfyCE6Ey1lOXmeQAekhwfg7l+nwdgiojiPrDHEAj4K5MXr9IkqfuQASHEWSHEshDiS0KIF6dXvOLCOgomyi4AT1Jjnh1hIfK9jlEEeo0xAFsBvAbAnwL4YQBvSa+YpWYXgFOS4wsAdia4NvyeUZOk7oFgZv2/AcwC6EOgJ/qSEOJlRPSVtApZRFhQVBghxEsBfNHi1K8S0XUABIJ12E1Z2dyPiD4UO3RECHEawNuEEH9GRN+xyacN8K3jRL8PAyBZ+35D5OO/CCH+F4IZym0A/mMKZSssLCiqzb8B+FGL88KljAUAO4UQIjar2Bn53pW/AvA2ANcCYEERjGhlI/+dkI92oywAkJlyJvl92okkdb8JIloSQvwDgDcnLVjRYUFRYRpr2Y84XDIG4AIAz0GzniJcv33YoxjhaI19xQSMIVgrj3MVzPU7BuA1QojtMT3FVQBWsVm3xDSTpO5VqGZ5lYKV2UyU/4ugw+mPHX89gIcaFiKu/AaCF+mbCctWFf4OwE8JIX4oPCCE2APgRY3vTNd2Afi1yLVbAPw6gC8Q0dnUS1stktT9JoQQFyLY0/KNtApYVNgpINOEEOJ9CJaK/hDA/Qg6od8C8Goi+vvIefciiIZ1ZeNzH4B7EJhqTiKYmbwGwBsB3EFEA617iuIihOgB8ACAMwD+CIEQfQ+AZwD4cSI63TivD8CjAN5NRO+OXP9pBGbMvw9gCsAAgFcC+A9EdH8LH6V0JKl7IcQ7APwIgC9jQ5kdHttHRP/S2qdpLbz0xMQ5COA0gs1JlyLYzPXaqJBo0Inm9rOEYI38DwBcguAlHAfwnwF8JOMylwYieloI8bMAPohAsAoEGxrfFnZUDQSCOo7P+m8EcAiBAvUiBB3fz7OQMJOw7r+NYODzGgDPBPAUgv0Xbyai/9eC4ucKzygYhmEYLayjYBiGYbSwoGAYhmG0sKBgGIZhtLCgYBiGYbSwoGAYhmG0sKBgGIZhtLCgYJgIQoifE0L8HyHEyUYo2AkhxJ8JIWy8i8rye5sQ4pfTLqfkPhcJIW4VQvxE1vdi2g8WFAzTQAjxhwD+EcAKArfoLwfwMQS7y78phLjCI9u3AchcUCDYfPcnAFhQMKnDO7MZBoAQ4iUIdjt/iIh+N/LVV4UQ/xNBnI1PAXhJHuVjmDzhGQXDBPwXBC5I3hn/ouEM8X0ArhNC/HshxB4hBAkh3hg9TwhxXeP4dY3PxxD4BOpvHCchxOHGd7c2Pv+YEOLLjYhpjwsh3i2E6Ijk+cbGeXti97pVCEGN//cg8PsEAB+P3KupfAzjCwsKpu1peGD9GQBfJKIVxWmhd9Gfdcj6NQC+j2A564WN9J7YOZ8H8E8AfgnA/wDwxwBucbgHADyOjeWtP43c6x8c82EYKbz0xDBADcA2AMc054TfWespiOhbQoizAE4Q0dcVp32ciN7X+P8LDdfVvyeE+BARPWl5n7NCiG81Pn5Xcy+G8YJnFAyTbyjRv4l9/jSAHQD+XQ5lYRgpLCgYBjiBIEbBHs054XffS/nec4rPl6V8H4bxhgUF0/YQ0TkA/wzgZUKIrYrTXtX4+yUE5rMA0B07p+Zx+0sUnx9r/E3zXgzjBQsKhgl4P4LO973xL4QQz0YQkOmfiegbCEb9Z7F5eegVknzPItB/qHht7PPrEASOeqjxebrx9/y9Gsr3n5PcB4Z7MYwXrMxmGABEdK8Q4hYA726Ym34KwCkEG9j+K4BFAG9onEtCiL8G8GYhxASC6GevAHCdJOuHAbxYCPFKBBZQJ4joWOT7tzbMYb+JYIPfWwDcGlFkfxNBWM73N847C+AAglCzUeYAnATwOiHEUQBPA5giopNeFcIwEXhGwTANiOg9AH4BQA+AuwB8AUGn/CkA1xLR8cjpNwP4HIBbAfw1gK0AfkeS7TsRCJK/QdDp3xr7/tUAXobA/Pb1CDb9nTehbSyLvRqBbuQwgP8G4IuN/6NlX0cgZHYiMLf9JoBftHx0htHCoVAZJgeEELcicLnR1RAGDFNYeEbBMAzDaGFBwTAMw2jhpSeGYRhGC88oGIZhGC0sKBiGYRgtLCgYhmEYLSwoGIZhGC0sKBiGYRgt/x+4oGc61re/YQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEQCAYAAACugzM1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABFqUlEQVR4nO2df3RdV3Xnv0eyFNsyIfZLm6AklinpKg3TJtShU4ahDTWUNlAo/UFZFTSEH27kaSeU0ulQt2mAmNLCKmSVARIG4hBpSltgmHbqmULDj7YpMEhBcaIoCAVZRlFQZMtR5MiynqU9f9x3rfuuzu9777s/3v6sdZb07rv33HPPO/fsc87eZ29BRGAYhmEYFR15F4BhGIYpNiwoGIZhGC0sKBiGYRgtLCgYhmEYLSwoGIZhGC1b8i5AFlx88cW0Z8+evIvBMAxTKkZGRk4Q0Q/Ej1dSUOzZswfDw8N5F6MyPProo3jOc56TdzHaEq77fGjXehdCTMuO89ITY2TXrl15F6Ft4brPB673ZlhQMEaWl5fzLkLbwnWfD1zvzbCgYIx0dHAzyQuu+3zgem8ms9oQQlwuhPhLIcTXhBDLQggSQuyxvHarEOL9QojHhRBnGnn8dFZlZfR0dXXlXYS2hes+H7jem8lSbF4J4LUATgH4F8drPwHgrQBuAfBKAI8D+EchxDVpFpCx4/Tp03kXoW3hus8HrvdmshQU/0xElxDR9QD+1vYiIcTVAH4DwO8S0ceJ6F4EAuc4gHdnU9RyMDQE7NkDdHQEf4eGWnPfiy++uDU3ypkDB4AtWwAhgr8HDqjPVf0Wtr9ReJ4Qzamjo/m+Raj7vNpdGmXx/Z2KUO+FgogyTwDeAoAA7LE4948BrALYHjv+LgBnAVxgymPv3r1UNQYHibZvJwI20vbtwfGsGR8fz/4mKTM4SFSrbdRVraavq337mus2TN3dm6+T/RZdXUQ9PZuvj/9GAwNEQsjvFU1XXRWcL6v7wUGivr4gn74+/XMNDBB1dgZ5CkG0ZUvzfXbs0OeTZ7tLWhbV+QMD5nzK2ObTAMAwyfpl2cG0k6Og+DSAb0uOv7aRx/NMeVRNUAwObrzs8dTXt/lc207E9pp6vZ7Kc7SKwcGg47bp9MPzdZ12V1dwTlhPpk4+njo7g2sHBtyv3b17vanMLp2l6/1k+USFra7dtQJV3UfLEm3LqnfG5l0qW5tPizIJii8A+Lrk+EsbebxYcd1+AMMAhnt7e2l+fp5mZ2dpZmaGFhYWaHJykpaXl2lsbIzW1tZoZGSEiIiGh4eJiGhkZITW1tZobGyMlpeXaXJykhYWFmhmZoZmZ2dpfn6epqamaGlpicbHx6ler9Po6GhTHuHfo0eP0srKCk1MTNDi4iJNT0/T3Nwczc3N0fT0NC0uLtLExAStrKzQ0aNHpXmMjo5SvV6nP//zGeruXle+3EKsn3+m22777qZOpLt7nZ75zDoJsU69vat0xx1LTc/0wQ8+Qdu2Nee/fTvRe97z6PnyjI6OpvpM4+PjtLS0RFNTU5n8TpddVlfWV1/f5t/poovU528IizXnTj6agjpW/46maz/4wSdoaWmJentXpedceunKprbX2el+v76+5ranLvN6y98nIeRlEWKdJiYm6PDhVdq61eZ3UucTPtO3vvWt0vQRab5PZRIUXwTwNcnxl+kERTRVaUahGtHJRkE2o934qNFmlFY2dEs7Qmw+P4kAaFUKfw/Vs6X1XNF8dO2pszOLX06Pqa36zPaq0ubTQiUoimgsvABAti1yZ+T7tuHkSfV327cDhw5tfD5+3Jzf8jJw8KD5mujxkZERc8YFYvduv++KTPh7qMovO97Z6X6faD669rS25p53Ug4dCtp8lOg7YNP+Q4RQ5wOUr81nTREFxRiAZwshYk0CVyFQck+2vkjF5M47gf7+jc+2nWD0hbLpePbu3eteuBw5dAiQmcF3dzd3BiG1WvZlSkr4e5g6yyjXXed2j3g+Oi8WfX1ueafFtm0b/9dqze+AyyCAKHgGIYK/YT6hNdQLXrA3dwuvQiGbZqSd4Lb0dE3j3Bsix7YAGAfw9zb3a4elp1pt87kyRadpim2jHA3XM8tE3Lpoxw69dUzeS0um5aC4QtvGYMFlKUaWj27Zs9VWTzbtVHaOaqlOtsxUJAuvvEAeOgoAv9pIH210/gONzz/T+L4PwDkAt8Su+zSCjXpvAbAPwGcArAD4CZv7VklQyCx4Qisc1flhJ1Krbb42NA+MdjTxz2V/MXzqrKMjf4GgSgMDfvVgY4YLBKbBrte3CpOlmcnqz8YUNqSK+jpX8hIUpEhfaXy/p/H51th12wD8BYDvNwTENwBcZ3vfKgkKIj+TV9W1Li9OSGh1URZcZ2EyU1pT6unZMJmN701IM110kb+ZpsuMwuX6VnWcNjNkmRJflo/N++NiKFBVchEUeaWqCYo08Xn5V1ZWWlW8VHDpEE1WZarku6fCJXV1ER0+vOpdD7ab+1SCQtVRmzYvpoVN/aYptPIWjEVAJSiKqMxmMsTGymnzdw7mJCVDZ1WmoqMD2L8fmJaGeEmPtTXgxhu3YM+ewK2Hq+uKu+8Oujpf+vsDJW9c2X/yZPD8WSt6Tc1OpcT3xcVQoO2QSY+yp3aeUZim2T6jpsXFxewKnAG2I+eiK7F1ybRc6DLbMe2JyGukbdJNZDGr2Xh/1iuhr3MFvPRUfWyWCnwsO6anp1vzAClhq6PIeuko66TrqF3yUbk2Cclr7T5PK6Sytfm0YEHRBug6vugL5qocn5uby7jk6WJr9WS7fh/vVH31Glkk2W84OOj+bDqhk+fafRJDjiSUrc2nBQuKNsDUOZhebNVLWcaXxqaD8ZlRhLMzW6+krUrRgYDPc+lmB+24v6CMbT4NWFC0AaYOwrczqOo03EdHEdahShDlqfcIvdT6zJR8BxFFJkmZq9rmTbCgaANMdue+ywtlU2a74LqMZLPckoXuI7opUnfe9u3uz2TSUZSRpLOgKrd5HSpBweaxFUJlzgiYzfx0ZrNzc3PpFLCF2EZCu+QS+zxtTSVlZpZJ+chHgGPHgPV1vZ+l5WXg1Cm5rysVz3hGs8+wKEWKbufCwYNBXUSJO8TUUcY2nyky6VH21K4ziiiu027djKJsG+5sR5Ouy0QuQaDSnE309JifTzZLkEXckyXVkmSZdRNJLbXK1ubTArz0xOjQdQplc+Gh6qjDNXzTeaokw+RbK60ks2xSRWrzydulHsuwUzlp2cvW5tOCBQVjpIwKSxm6dfzoiNhF6dvRsfk+tt5600o23lJdU9wzrU09lsH3UZlnQ3nCgqIkFLGzLpubcdNMIRxVuih948s/NvfJIsm8pSadWbjWY5FnFPEZXq3m9y6Vrc2nBQuKEuDqHpuRYxpphyPiHTvsO9PoKLoVDgFtymH7vLoUX46L59vd3Xx+kS2k8nZiWAVUgoKtngrEzTcD9XrzsXo9OJ4nZQsLGVp/qUKBhpHQTp+2zzO8ZmioNQ4BTeWIEj5vGLHNJQTq2prewV885GkeIVBtkVk6AX5ODMvW5jNHJj3Knso6o/BZHmDUmNapbUfd0VmdaSaRpYsP2zV2VaS3ffvUAZpky0kucT2KQFLPBAzPKJgEPPDAA3kXwYv4SDsaGxmwi5UtBHDXXRvX6Fxf9/UBn/wkcOIEMDiY/l6KG25Q73eIInvue+4Bbrwx2IchQ/ZcKhfsPq7ZW4EpZratt/yhIaC3d7V0e0cyRSY9yp7KOqMo6giuXvePspYXNkYBNiFQ4+vbLgpeH3ceumBDSd1suIQUJdKXs4gk8Uygy6OdrKXAyuziU1Tl4fj4eL4FcMTlZR8cNC8VxT3vunQkPns1VN8lddynW5qRlb+oAxcdqt/TtrMvo6VXmrCgKAlFNI9dWlrKuwhOJHnZba51+Y1cZhVhB+xTfptrVB2/zPQ3LLtsA2EZrIh836My7x1JAxYUjDdTU1N5F8GJJC+7z2jehI1yOzpz9Fn+sHlmH0GhuqaqyzE8o2BlNuPJjh078i6CEyqlpknZOTQUKH99ro3mEXeid/vtcsX2jh0byuZPfnJDUd2sjKZNSniX8u3evVEmlRL66ac3K2xDM2DVNS4O9soEx82Ww4KCMVKPb+4oOL4v+8GDwfgxjhB2HUV0jwVR8Hf/fuC++4Bt2zbOq9UCq6iPfQzYtSs47/WvBy6+2N/CRvXM119vt+8j3umr9iREsbUiKhOhkL7ssnNSS7m2RTbNKHvipad0mZmZybsIzvisUeuUvUk88MqWbQYG5Ov/3d3ySHk2Sz2yZ7YtU3xpzcYPVpWXY8rY5tMArKNgfBV8CwsLWRYrN6IdqY2/JF89gWtSlcWnY7a9544dzdeZBExRdRRpGYNUtc2bYEHR5iSxD5+cnMy+gBmhC1nq4x/Jx/IorWSjUI8/r4vwMnmmDfMqijVenDT3QJS5zSeBBUWbk8SaY3l5OeviZYKu4/Dt1E17GfKcUSR1Oy7zTFs0U20daVoslbXNJ0UlKFiZ3SboQp2amJqaSrcwLUIXDtPXqZ/O+qm/384tiIn9+zcrpoUIFNM6bBTQOuJtob9/I/zqsWPFV+gmaeNxVG2+rKFhk8KCok3wNRkFgOc+97npFqZF6DoOFw+rITaWUypTWFtqtSA+9g03NJvqEgF3363vmJJaIdmaABeVJG08jqzNq6za2kFYsKBoE5LYh4+OjmZSpqzZtUt93NVddq1mZyYZ3QPhSldXIGgA4MiRoDOKYtq7kKSjr8JegTT3QMjavG6GWnlk61FlT6yjkFO2Neek6HwV2boC1wX28b2/KkV3Z/vsLtcpoE16F5UfrLK1lyzL3A7uPcDKbMaXsoaF1L3Ytp14kk7Ax1w2VLz6KmbjHaVsT4YsyfIpihfVPASWrM23g3sPFhRM26F7sW078c5O/w7Kx7IqFExpdtQ21lgudddKiiawilKWrGBBwXgzMjKSdxG80Llt9+nEXV2+Dwy43yPupfbSS1dSGUnrnlfmNrwoyyx5CSxVmy/jcpwLKkHBymzGyDXXXJN3Ebwhkn+WKT6jyJwDrq5ujl+uM5c8csStrHHFa38/8NhjXUrzVBdTTZ1preznTdOCKAlpmry6oGrzZTMZTg2Z9Ch74hlFuoyNjeVdBC9Mo9GBgY3NbZ2dQUxpG91FiGkpwmZ5K4ywFyrY4yNVVd2nHUApPjouyjJLXjOKsrb5pICXnhhfyrpLVbd8kmQXc4iuEzOFWY0G/9F1yqq6d+1AbYRWXBDkvcySNFpdkvteccVaZZeXdLCgYLwpq98bXWfq68Ijup6v63x1QmjrVvtyqure5Ok23snZPm9RLHhUgjzr6HpFmUnlRS6CAsAVAD4DYBHAUwA+B2C35bWkSNeYrmVBkS5l9aSpe+l9TFc7Opo7DFXna+OJNopu5qOqe9W943mFz2ua4USvLwJ5LTkVxdorL1SCIjNlthBiO4AvAXgugBsAvAHADwP4shCixzKbwwBeGEsTqReW0bKcxIFQjjRHimsOQpOGUla1E9hm13dU+azbQa6qe9m9hQi6tSjhzuH+fuBTnwJ6DG9evF7y8m2UlxI7r/sWHpn0SCMBuBnAGoArI8eeDeAcgLdbXE8AbvO5N88o0mV2djbvIqSOr47CZh3fJYCRLi51raav+/i9TUtK4Xmq+8V3aOe5DMMzinxAq5eeANwL4D7J8a8C+KrF9SwoCsL8/HzeRcgE2S5mG6unNN19mzb/XX75OWulqu1yVFfX5v0lQgTPH0VVF63oNPMSUqyjaL2g+D6AOyTHPwJg3uJ6AnASwFkAywiWsV5sc++qCIq8rU5Cpqam8rlxTpg6etsAQjZCRzcbUOkb4vcJ20itJhcAqtmKrm3pdnO3So+RV/sfHCS67LJ67u9dHuQhKFYBvE9y/DYA5yyuvwfArwN4MYDXA3gAQB3AdYrz9wMYBjDc29tL8/PzNDs7SzMzM7SwsECTk5O0vLxMY2NjtLa2dn7nZejTZWRkhNbW1mhsbIyWl5dpcnKSFhYWaGZmhmZnZ2l+fp6mpqZoaWmJxsfHqV6v0+joaFMe4d+jR4/SysoKTUxM0OLiIk1PT9Pc3BzNzc3R9PQ0LS4u0sTEBK2srNDRo0elebz3vcdo+/b1phd027Z1+vCHF1r+TEtLS6k80+joKNXrdRofH6elpSWampoq7O90++3z1Nm5Lu0o+/rUz/TBDz7RmAWsK6+P53Xbbd/d9FsLIb+2t3f1/DMNDhJt3Xqu6fuOjjXq6FgnILy/qgzr9KxnnSUhgt3fg4PNz7R7t7rsl19+rjC/U1Ztb3FxsXLPZPM75SUo/lRy/JCNoJBc9wwA0wD+1XRuFWYURVorHR8fb/1NC4DrMoSr3iOqE3CZgYTY6EJ0FlW659Ith7XDCLtd27xKUGTpwuMUAJk9x87Gd04Q0RKAfwDwgoTlKgVFsr648sorW3/TAqCzmpLhEmFOCOCmm5rzOnPGfF3UQsqmLRBtdkeis44KUVmF1Wrt4baiXdu8iiwFxRiA50mOXwXgYc88BQLdReUpiq8dABgbG2v9TVNCZ9554ACwZUvQcW7ZEnyO4+Lbx0WIEwW+oMLy+IQxtW0LRM3CLi4kQqLlP3QoCKQUJRpYqeqUuc1nQZaC4u8A/JQQ4ofCA0KIPQBe1PjOCSHEhQBeAeAbaRWwyKQZrcuVeOf60ENXZ3/TDNCFrjxwAPjoRzf2PKytBZ9lwsIWVcctczAIbJTnwAH7GN4LCxv/mxwbhvT1NQs7VfS9ePllM5F24eqry9nmM0O2HpVGAtADYBLAgwBeDeBVCBTS3wWwI3JeH4K9FbdEjr0DwMcB/AaA6xBs2HsQgd7DaPlUBR0FUT5WH7J19q1bz5VyXVqn51Htnu7s9L+fSqdh0j247BKP66jiVk9dXZvvPzBgDmYU11EUSUeWB2UN1pUU5OTCYzeAzyJw37EE4PMA9sTO2YNgOenWyLFfBHAfgBMILJ1OIpiF/KTNfasiKPKgSh2ErSI3nqK4CmvZ+bZCwCbF9zqo7h8KPZXiOi484s9VlHgUTGvJRVDklVhQ+FOlDiLpjCKNzVdpCwobgW1jfWXaR1HkAUMrZto8o2BBwWgocgfhiq6jV0Wfi47Yk9aFTYft45zQhG08cJ0ALOoO5aKWqyqwoGCskOso1kr7IupGn/HARfFlnaSzK1OHHd4zrlfo6rL3xyR73rRmK7LATnl7CmjVQCbc5NZusKBgrIl3rocPr+ZdpMyQCRKTYz/b5R+bEbwqrvfAgFpQ6e7vG2cjLgBtZkN5jORbtTS6srKSboYlgQUF483ExETeRcgEWWfY1WUOSGTTOeo67M5Oc0Ah3fW6TtFXSMQFUFEDHbVqRlHVNm9CJSiy3EfBVIRLLrkk7yJkgmyTW70edD0yTDuzo+g2391990Yeuh34tvsdQoaG1HsdajX9Poj4Hh3bfR2t9hTQqv1FVW3zvrCgKDB5BY2J8+STT+Zz44xx7eRMO7OjqDrzHTsCARX+pqoNc7t3A9dfD0DiiCA4vpmbb5YLOSGCHdWqMnV2bhaAnZ3yc2XlbCWublV8qWqb90Y2zSh7qsLSU5GsO+bm5lp/0xbgup7vgm9gpHD5S6cnkS2zmHQiqjKp2pRNOatsbVTVNm8CrKMoF0UyU63qS+PSmfsoS209wsZTrRZc7yK0bJXvtnsQdPHA2yFOQ1XbvAmVoOClp4JSJO+xKysrrb9pC4guY5gQwn3pr78/WGpy5eTJ4F665Z94WXTt4vTpjaUuwM7JoUoXcPfddg4Sy05V27wvLCgKSpG8x1500UWtv2mLCL3DDg7qHeytrze74bbFV7Dv37/hsFD1fVRY6NrFyZPBfCDqFNGETBdwww3N+pW8dGatoMpt3gcWFAUlT++xcebm5lp/0wyRGQnYzC6mp907R1/Bvrysn1HE40fI2ovMyil+nY6oi/VDh4LZhMwTbxWpWptPjGw9quypCjoKouLEzC775iMbD6s2nlNdFLhRZXR8X0b4OfTkqtNFdHerQ5LG9Sbx9pKmvqVIOrNWUPY27wtYR1E+XILmZMnExEQ+N06BeEyKkyeDvRJRbEbnqnNlHDgAvOENG3sRiDZG9319wD33BMeOHQM+8hH1LKZWA9bXSXkf02ylVvO7TkaRdGatoMxtPhNk0qPsqSozCiY5LiawUX9POnNT3Yh8cNDd9YZPHIvubrMTv+5uu/gUSXaaV3VG0a6AZxSMLyMjI3kXwZq4/sF2hzHQHOWuv999ZzQQzDZIMQlQlUW1iSwazS5O/B6yXearq8CFF25WSPvoGoqkM2sFZWrzLUEmPcqeeEbRnshG1T5uvMOYFD6bHnX3c42eZ5oNRUfzts7ykswMXHRmRdGvMW6AN9wxvpQliIuqE4x3ot3d5o1wskhxNh2eqXN3DXq0des5bX6m+8YFgE1eSSmSVwFfytLm04YFBVN5dKN52ehWFeWuo8Pc0alGzDodhU+HOTioLmc0NoVKR1GrNZcxi1jhcVifUV5YUDDejI6O5l0EK1w7KJVpak+PPh/TiHnfPrWgcF/mWdfOflTuOVRmwK2YUVQhnG5Z2nzasKAoAUVd163X63kXwQqfJQ9ZlDtTR2cSSKblJ5PVlIt/KFVeOl9NWY/2qzCjKEubTxsWFAWnyOu64+PjeRfBmjSEramjMwkSkwLdxUzWlFR5mZa/smxnRW7LtpSpzacJC4qCU+RR2NLSUt5FyASVUFEtSYV7LJLMKHQdpk8YU9e8wuf0UdS7UNTZsS1VbfMmWFAUnCKv605NTeVdhNTRjXp1HfbAgHnEPDi4WT8ABLoPX9Na17ZhU8ayj/qzpIpt3gaVoOANdwWhSN5i4+zw8ZVdcGQb1EL3HDq3FB/9KHDfffooa3fdtdlNCCA/FsX1t77pJv3327Zt/F+rNZdR9/xMNdt8ImTSo+ypjDOKvEd4uqWC2dnZ1hSiBZhmDCaHeuFyjQqTkz/dUqJcR6F2Cii7t0pZHW9Lphls2ZeOklKlNu8CeOmp+OT1cpqE1MzMTGsKkjE2yuKw3n1NSTs69NeZlhLjJq4qQREXOCYBFb/GpMNo92WpqrR5V1hQMEpMytmFhYU8i5capplCGKuayC4GtQxTZx2GOU1a3lCxHqKaSajK7aOjKYJhRauoSpt3RSUoWEfBGF1IL+i805UIk0vsCy/cWMPPyqX7U0/ZB/vRlffuu5vz0UXDC4kGQlI5Iuzvbz+X4jKq0ubTggUFY1Sk9/b2tq4wCZFFrwsxKYvjfYPKe6wuCt4FF+jvUa/bK4x15Y0rnnXR8ELiwkQV76TIhhWtokxtvhWwoGCMLqSnpqZaXygP4kGK4i60dQGJgOaO8MAB+Qja5FrbxljGdmR+6BCwZcu6VT7795vz0wm4qIA9fRro7m7+vsouxWWUpc23DNl6VNkT6yjc0SnS19bW8iqWEzZr6yoXGVFlrUoxvGOHWaFrsxfCZa2/VlNbPckU2rZWT1Fk+oqurs0OBduJsrT5tAErsxlfRkZG8i6CFS6bFnWCMYmHVZvd1S6drhBqQZEkHkT0exf/T+1iNluWNp82KkEhgu+qxbXXXkvDw8N5F4NpMaqIdn19wRq8LWF8axmm1+XAgWBTnoqenmBpxxbVM9VqwIkT9vlEGRoC3vSmIAKeDiEC/UX0uv37mzfqbd/evJGPKTdCiBEiujZ+nHUUjJGyhIVU6SBOn7a3NALUimEbhfGRI+rvurqAO+6wLwcAvOAFc5sE1/btwO23u+UT5eabzUIC2Ky8bqfd3GVp862CBUXG6KxwysLevXvzLoIVoclnrdZ8/ORJdVxo2e+jUgzbKIx1iuq77nIbeQ8NAUeOXNI0ixEiiHudZAR/8qT5nO7uQMBG66WdzGbL0uZbhmw9quypKDqKquxwLdt6re2GMd3vE1UMd3QEDv1k6/LxNXtVLAmfzWqq57DdtKfSJ+j0J7qgR2k+W9EpW5tPC+ShzAZwBYDPAFgE8BSAzwHYbXntVgDvB/A4gDMAvgbgp22uLYqgqMoO17JZgJhCooYdpq2VlEqYqMKPyjpZn8GB7jlM+ck82IY7z3X56uqlVqvGwMeGsrX5tGi5oACwHcB3ADwE4JcAvBrAgwAeBdBjcf0QgCcBvBXAvoaQOQPgGtO1RREURXYd7sLY2FjeRXDCZHkUdm66UbUpr74+fYeahmWQ7jlMgw3V6N8UPU8nSMIY3e1g9VS2Np8WeQiKmwGsAbgycuzZAM4BeLvh2qsBEIAbI8e2APg2gL8z3bsogqJsMwpVJ7C8vJxnsZyxceoX7hEw/T66TjMtc1zdc6icApoGG7pnNwmgorTbPIVS2dp8WuQhKO4FcJ/k+FcBfNVw7R8DWAWwPXb8XQDOArhAd31RBEWZdBS6sk5OTuZdPGdM7sR1s4no7+M7o4iXxbcd7Nx5zqvTNs0aTM+fd7vNuwxlbPNpkIeg+D6AOyTHPwJg3nDtpwF8W3L8tY2ZxvN01xdFUBCVZ6qu6xDL7EnTR1hEMekoZJHsurvthY2JN73pzKaZi02HqVtiUu1Oj5Yp73ab96ymzG0+CXkIilUA75Mcvw3AOcO1XwDwdcnxlzYExYsl3+0HMAxguLe3l+bn52l2dpZmZmZoYWGBJicnaXl5mcbGxmhtbe28VcPw8DARBVYOa2trNDY2RsvLyzQ5OUkLCws0MzNDs7OzND8/T1NTU7S0tETj4+NUr9dpdHS0KY/w79GjR2llZYUmJiZocXGRpqenaW5ujubm5mh6epoWFxdpYmKCVlZW6OjRo9I8RkdHqV6v0/j4OC0tLdHU1FSmz6TaASzEOs3MzJTumT7xiTPU27tKwdJN87Nt3XpO2VFefvm5Tc90+PAqPetZZ0kIoksvXaHBwY3yXHRRXZrPZZfVzz+Trm51z/SXf3mStm5di123TjfdtGZsex/4wOym5w5Tb+8q7d9fl9bL4GDr257sfVIv6623pO1973vfa8s+Ii9B8aeS44csBMUXAXxNcvxlKkERTUWaUZQF3QiubNG+ZLOAsOMJR8dpLW3Y6Cl8R8dJR9W6WZNMh7Nvn9uzZ0neM4qytfm0UAmKLDfcnQKwS3J8Z+M7HQuaa8PvmRTReZDt6urKp1CeyHYQE2248ujv18djiGLaMGnjktvknVdFkg1uQ0NqVySdnZvrBwC+9KXibAj1rbO0KFubzxyZ9EgjAfgSgH+VHP8KzMrsWyBXZt+KEimzy4ZqXXpqairHUtljEw/bNT/TrMN2ZuKz5p9kVK261uTdtkgWeXnqScrS5tMGOSw9vQ2BKewPRY7tAVAH8HuGa69BsMR0Q+TYFgDjAP7edG8WFOmytLSUdxGM2MbDjp5v6oRcdnin0aHF8xkYINq2rVmPYLs8Ztp0aBKmeSuz86YMbT4L8hAUPQAmEWyyezWAVwF4AMB3AeyInNfXECi3xK7/NIIlqrcg2HD3GQArAH7CdG8WFOkyPj6edxGM2G6yI7KfBbRyw6SqTK973UmvDlsn5HTmseH3eZvH5k0Z2nwWtFxQBPfEbgCfReC+YwnA5wHsiZ2zpzF7uDV2fBuAv0BgZrsC4BsArrO5LwuKdKnX63kXwYit2w4idSfa2dl83o4dakGR9khbVabdu9e98jOZ9cpiUIRmvXkrkotAGdp8FuQiKPJKRRUUZZ3OhyZ+Rcalc9MJlejI2SZaXVojbZ05qA2ytqVqb6aNglVxPZOEMrT5LFAJCnYz3iJM8ZyLzNVXX513EYzorGSGhoCLLw6sgMKkIhpfgch837TiMaitpzSFbaBqW/fdJz9fZTW1sGAqi7EolaEMbb6lyKRH2VMRZxRlm85HR6PhJrOioxpVy3ZP61I4cu7ocDs/adllS0Xvec+j2ucjst99bru0xDqKjQ1p7QZ46SlfyjSdr1JH4ePCI+yEVbGkdcI+yfKi7lrdb+LybLWa3e8bjcfR2Rl8ZqoPC4qcKdOMokxlNWGjZ5B1mLYCxseaSoVMUIQjW91vYivQwqS6V7QcVRko+MIzChYUuVCml69Msx8TLjOKcLRNZCdgoufr7mUjYFXtY2DAvO/BRUiEgiJ637jAqNJAgXGDBUUBKIvVU1E6ijTqy0VHEX0+GwETr48kAlZ9P7ljv2gZXIVhtG5kwkknlNqF0BFfu8GCgrGmCLOfNMswOBjEvDZ1otGO0Gand7zjtI1PIcNnZhAqp2Vl7eranGd8n4huP0kRBgp5srKykncRcoEFBeNEdDTf27taiXgEujgMsrx9zu/u3nxeGKva53lNKVQyy9x/xGdSHR0bkf1M9/OJgVElJiYm8i5CLrCgYLxZXFxs+T2z0pPonOXFO8KBAXU5VJ2/KSCQCh8z3riwsHlOnyRE+1k95dHmi4BKUPCGO8bIk08+2fJ7ZrXpS7XZjKjZxfjQEPCxjwXHZag27Z086XZfmzxN3Hmn3/1sIQKOHEkvvzKQR5svMiwoGCNbt25t+T2zikegEjR9fc2fDx5UCwkAWF3dvCNbFwPCJOAOHgzy9GFtbXPMjLR3UacpeMpAHm2+yLCgYAqJbWAhV2wFkE3HGD/n5pvlwkUI/yBFtsTdd1x/PZBm7J12ct/BbIYFBWNkZWUll/v29wcR6dbXNyLTpZGnjQCy6Rij5wwNqZed4sta0WvCmUBHim/i8nKwVHThhfrzVLOf+PFWRpYrCnm1+aLCgoIxctFFF+VdhNQYGgqWeY4fDzr6Q4fknbhs5hGlq6u589Q5Bowva4XliDryW1vbfE53N7Br1zqECMKXunD8+IaTPxU33SSfXd10U/ozubJRpTafCjINd9kTWz2lS1VMBV33ZphceUQtgXT7IFyi53V2Nm8wDOvedZ+FaSNe1AGgbFNjWTaHZkVV2rwrYPNYxpeqbD7y2Zuhcw4YNalV5d3TI8/X1vw3rHuV2W2tpg9Q5LOvowgbLvMmaZsvq6BlQcF4UxV3Bq57M2z2NkRH5rJzw93TcWyF1tGjR2lwkGjLFnWHb3LwFxUycf9UMvJ24VKETjZJmy+zoGVBwXhThBc3DVw7QN2ubJmQcdls59KZqPLdsSN5nch+2zydQpa5kw3JW9AmgQUF48XgINHWredK/eKGuHZCJiERjtBDfGYsJgE8PDysvX88v6hPq44O/Y5qVX2o/GK1oqMrSiebxM14mb0vs6BgvCjKi5sWLrMjG0ERXf5R6TJsnALqsBEUg4PqiHwqYeHi5kO1hJY2Ze5kQ8r8zrCgYLyowovri83SUygIdJ5mdcpjk+AaHh7WKrJtytrZKb+3iyVVUmFnS1E62SQzijIvn7GgYLwoyoubNjYzC5XVkE9KoqeQKcqjwscmHKoMV8eBrdBPlbmTjVJWvR4LCsaLQEexVvoXN4pLZxR94V1DjppmYDZCeHR0dFM54h2PqcNXzShk9WCaZbTity9CJxvWexoU4XlsYUHBePOpT50rZEP3fQF9Z0kqAWOzRBUNM2qKBxEVKvV63fg8ps7dpNCOx7EwBWwq+2zSBpt6t6FsMyQWFIw34+PjeRdhE0lewCR6F5lwMkXD6+6264BlHbGq7m1nOj5xJEw70ttBP5VWmy/b0i0LCsabpaWlvIuwiSQvoI1y2BVd59rVZa8Yj1sXhXVvirYnSx0dyUauZevk0iStNl82YxCVoGCngCkS9QYaxgWoAidOnABQrOdTueXOOm6Cqg76+wMngTLnffW62rNsnGc8o9kB34kTJzA0BNx4o30eIevrgetzX7KKCVIGwjaflKwCcLUcmfQoe8pjRlG2tUgX5ufnC/d8SUa7vqM8XR2Ylp9sU7wM8/PzicOaJtErqZbaiqizSpP5+flU8inae2MCvPSULVWeps/Ozhbu+ZK8gC5LTza6AJOn1jBvG0ESL8Ps7Kyz51hZSqtzKlvH58vs7GxqeZVJsLKgyJiyrUW6MDMzU8jnc3kBo+eqOtO4p1fbWYIQdpZHNvsd4oJiZmYm8YwiTaFetAFDVszMzORdhFxQCQoRfFctrr32WhoeHm7pPffsCYLQxOnrC6KzlZlTp07h+c/fWdrnC4MELS+bz42+DhdfbKcXCAMTyeonpKcHOH1a3U5ChAh0CyGnTp3CkSM7ceONga5Dlfdv/ibwiU/o427H8/aho6O5jtLMu0icOnUKO3fuzLsYLUcIMUJE18aPszI7Jaqs+FtYWCj18x08aCckouhCm0YJ68AUEe/pp4O/pvPiSs6FhQX09wN33aUOXbq8DLzoRcCb36w+R5a3D5VRzhpYMIUHbDdk04yyp7zMY8u0FunC8vIyEZX3+WzX+KPLPrrlnngUuhDT0lL0PJmeRLbWH9a96TlMehLWUbgRrfd2AqyjYHwZGxvLuwiJsNl/EN+/4Bra1LRJraNDfY1O8Ebr3rQJzrXMvpR1wOBC2du8LywoGG/W1tbyLoI3Ksd+nZ2BAFF1dqpOOZx1RDvLWs3sPHDfvs3X2XSy0brXBRXSzSiiiuZ4uXV10M6Uuc0ngQUF483IyEjeRfDG1OGrSHvPRNgRuy7bxOt+YGCzsNCVK5q/Tbl7eszCox1mFGVu80louaBAoCh/J4BjAFYAPADgVyyvPQyAJOlDNtezoGBC0vbrROTunju8X1qmpbqOOomXWVmKC7J20VG0KypBkZl5rBDiEIB3ADgIYATA6wC8FcArieiI4drDAK4H8KrYV48Tkca4MCAP89gqMzIygr179+ZdDC+yMFtWmYjq6OsL3IvIrtOZlqZZ9z7lBprrqspm4FHK3OaT0FLzWCHEDyIQEu8jog8Q0ZeJ6LcAfBnA+yyzWSWir8eSUUgw6VPmFyYLs15XU9Dwfj6mpY88sjc1/1q+JqxRwZCXj61WU+Y2nwVZ7aN4OYBuAIOx44MAfkwI8eyM7stkwP333593Ebzp7wfuvDMY8QoR/L3zzuA73w5YJny6uoBaLbhHrbbxf3i/0Gmgi9AaGgLe8pY1TE8HM4HpaeANbwjy9REapj0cKoTYuFe77KMoc5vPBNl6VNKEYNawAgRLW5HjP4lA1/AKw/WHAawCOAHgHIAJAH8AoNPm/qyjSJeyW4DYBOdxXWf3tR5yUQSbdApCuMebiJfbRRkfXt8OOoqyt3lf0EplNoA7AXxfcvzKhqB4g+H6twH4HQA/i0BX8XEA6wD+u+aa/QCGAQz39vbS/Pw8zc7O0szMDC0sLNDk5CQtLy/T2NgYra2tnbdqCIOoj4yM0NraGo2NjdHy8jJNTk7SwsICzczM0OzsLM3Pz9PU1BQtLS3R+Pg41ev18+ESwzzCv0ePHqWVlRWamJigxcVFmp6eprm5OZqbm6Pp6WlaXFykiYkJWllZoaNHj0rzGB0dpXq9TuPj47S0tERTU1O5PdPY2Fgpn+nP/3yGdu1aJ2A91vHFPwfpssvqm57pAx+Ypd2710mIdarViJ75zFUSgujSS1docJDove89Rtu3N+e3bds6ffjDC4mfSQh5OePPMjjo3/ZsFdxCrJ//ne64Y4l6e1dJiHV61rPO0j33VO99euihhyr3TDZtL5GgAPBSyK2Q4ukrjfM/jkDxHM/nh20EhaIMH2xc+8Omc3lGkS5l3KUqMyO1sUyKYhO5TjUqz9IBX5r3sjX1rZrTPxNlbPNpoBIUtjqKfwPwoxbpNxvnLwDYKcQmzzM7I9+78leNv5s08ky2zM7O5l0EJ4aGgI99zN3CJ77ObvIRtbqq9geVhnL3+uuBYGykJ8m94jqcWi3Qt0Qpi0+vNClbm88aK0FBRMtE9IhFCpvsGIALADwnltVVjb8Pe5Q1FDqOr39+FCkiXBJ27dqVdxGcOHjQXUh0dwcdc/T30nl5NZFUuTs0BNx9N7DR7NV0dCRrW/39gWnr+jpw4kTggDCu/I9G3atKu9ZRtjafObJpRtIE4AcBnAXwJ7Hj/wTgQc88b0egp3iO6dwiLD1VSelXFt/8Jn9L0SWjjo7mYx0dm91w2C5dZfE7u26Oa1XbqlK71lGWNp82yGFndmj59HYA1wH4aKOj/8XYefcCmIx87gPwzwAOAPg5AL8I4JONaz9qc+8iCIoqBXhJM9pXVtiute/Y4aa7MJ3b05ONSwufqHZp7vBWUaV2raMMbT4L8hAUnQD+CMB0Y3ZxFMCvSs77CoBjkc+7AHy+cd0KgDMA7gfw2wA6bO5dBEFRxIhwvqQVPzhLbExJ9+3zi2utCoEKmH1GZfU8SduW78xAd/8qUYY2nwUqQZFZ4CIiWiOi24ioj4guIKIfJ6LPSM67joj2RD4vENEvNa7bSkTbiOgniOjDRFSaGFpV2ph0+vTpvItgRKfQ7esD7rkHmJx0D2AkBLC2pv5+YWFjzV4IoLMz+CtEECHPd/3eZ3NcfFldp0uQKeqXl4PjOjo73Y6XlTK0+VbCEe4yoswR4eJcfPHFeRfBiEoAhz6I+vv9rIOCSa6aXbuCMKuh4jvqs+nkSeDGG+2ERbxTBwIl8hVXrJ9XKu/bZ1/uMPxrdFf3/v0bZfF1xaESmjphWkbK0OZbimyaUfZUhKUnouq4Yx4fHzeek9ezRhXYKvfbIS47kW3S9u12eYb1ofP4qloGita9zXJUuONaF7dCl5dJ19AuOgqbNl800ngHwfEoGF/q9br2+6wtYVQvgOy+YQcpe1FUnfqOHfLy64RAmH8allG6zjda9z4KbpUew/c3axerJ1ObLxpp/S4sKBhvQjcEKrIcZepeANf76gwMZMLI5uWzGeWrlOGdnWZhE617HwW3rm5Uz2walVZlpqzD1OaLRlrvIAsKJjOytPDSvQCu9/V5mQYHm2cWtZp52Siaurr0Hbdp5hJ1+ucyg1Hdy+SwsB1mC1UkrXdQJShYmc0YGRkZ0X6fpYWXTunqel9fA4MzZzb+P3myWSnc3w/ccIPc6qdW29jlrMJkhXXHHXT+//7+4PX3obNz8w7rkFCR/vrX+1lCVRFTmy8amVtZyqRH2RPPKFpLliNR3SzA576uyyamWYhNGXxibEeTTXlMSeWO3KZsZdz7026wjoIFRe6ELol1ZLVubXoBsl4vN03pbb3HDg6qdRVCqO/T0bG+KR8fQaFaXrMRPFWzaLLBps0XDbZ6YkHR1qQtDFzyUwmCUFfhMgrX6Rh27JAfl80ErrrKXVCoZgUmnUfaMzSm2LCgYLwJA6dUAZVJrWpppqdH3oH29OhH46pRuK4jHxjYmHV0dgaf43WvWiqKOzRMY0YRV9zb1GVVlN9VavMusKBgvFlZWcm7CKmh6hhDE9k4plG66jtVZ+lqeRWve13HrhJqqpkJkV5HYer0q7z5rkpt3gWVoGCrJ8bI8TSi8BQE1aMQuVv3qCxKajW5dRHgbnkVr3vdT/H00+rvjhyRHw8DF8mstkwWT75uQMpAldp8GrCgYIxccskleRchNXTmgrK+oVaTn1urqTv9229X3yMeUU4WGChkaAjYt+85TU79fM0ddf1ef7/aV5Puuio5voxTpTafBiwoGCNPPvlk3kVIjUOHgg5ahqyDu/32IPpdlO7u4LhLpx8lGlEudFgYJ3Tq973vdYBow6nf9dcHjgNd0XXeBw64Xzc0BMgcrJbV8WWcKrX5VJCtR5U9sY4iXebm5vIuQqoMDJgdCEbJw62Fbv0/Hp3PxuJJ92w6Xcu+fXauTWyU32Wiam3eFrAym/Glii9NWh173MWHr/WPKh8XBbouqXD1qKtzOVIFJXZIFdu8DSpBwUtPnrRDgPmQlZWVvIuQCtHf7ODBYIlEt/xjk9/+/YFbjzg6RXC87Rw4ALzpTfJ84uzerV46U6FyITI0ZHfPKMvL6muqpP+tSptPDZn0KHvKekZRZftxGYuLi3kXITGDg5v3GnR3J/vNbHY1y8qhco1uM5ofGCDaskX+vWrnt8o0Ng1vtFWdUVShzfsAnlGkh28YybIyNzeXdxESc/PNwOpq87HV1eC4L2FUOxUyk1NZ2yHS5UJNivIjR4Bz5+RnqiyXVKaxvjOAWk2u4K+CEjukCm0+TVhQeFBl+3EZu1ts75jWsl40H9VyycmT/vmb4kTLOm7XNrJ7d/PymE8bU10Tj7FtgxDANddsFlYq4VVWWt3miw4LCg+qbD8uY2JiIpV8bASAKdazy72i+ejwyR8wx4mW6QZc2khXFzAw8D3v60N8BIIKIuDee5tjgwPB5ySzs6KRVpuvDLL1qLIn1lEUD9s68w0uFLdgcl1/d11fN5mVqvQfqnoYGNAHSIpe76o76OqS55VGaFWTToZJnywdMYLNY9OlnbxmpuFy2VYAuEbqUnW8rh2cKeZC/PfWmZX29KTncTVe94OD7vsoVIIwbWV2KCiq8G4U1c141oNUFhRMZth0DLYCwHVGoTpfZQGkSrWa/vlchE+WHaOuczcJkPjvkzSgkurZq74ZL0+ydsTIgoLxRje6SntJyXXEpFs+McWrthUUriPvsExpjKbjdZ/GclG0PgcG9OdedZW9MKnV9HVVpuXZos4osoxPT0QsKLKiCtPsJGQhAFzqVHX/Ws0co8H2RUvSOafdOaa1XBT+Pqb8Qv1J9PcYGFDvSTHVVZX2WuQBzyhSTK0SFO2i1B4dHVV+5zLCyUKoqn4DV9cUnZ3uMSRcO2af543XfVrLReHv4yJU4uUI6yVc5jPpbkwCuUjo2nyesI4ixdQqQVHlwC1R6vW68rsi1IFMAPnMAnQznLTW8kM9gklwbDzT+qZzfZ9P9vvY6HJcDAm6uvQzubK8G7o2nzds9ZRSapWgyHq9sCiMj48rvyvKrMrFKsl19BzmH80zbV1B/F66OvUxkVXllaROdMt+LjHAi4iuzVcZFhQZUITRdCtYWlrSfm8a4diOgHxHSj4j2zRGz2kkmS5HNcq31SvEU0eHul5NM4qurqDjl11req4yvxumNl9VWFBkQFFG01kzNTVlfW68sx8YsKujJHWpG9mGZfHtuMOyuZrb+gimwUG9pVZ4rs9sRoXump6ezcI2+puo6qSzs/yzbZc2XyVYUGREO1g9zc/PW53n4hk13iEnGYHadEo2Hb2tAEszRZ/PtFwWdsCuQktXhz6K+tCU2HRP39+zCNi2+arBgoLxZnZ21uo8l04n7MRN7jZ0S0GhgDYt1RCZ9wuohHwWu5dVgqkV95DVo88MJTSZ1dVlmWfbtm2+arCgYLyZmZmxOs91iUcWI8JmBGozyg87pahAsZ3d+D6TKkU3okVNSeOdZlrCwXXDn+89TMuKZZ5t27b5qsGCgvFmYWHB6jzVCFMVn9q01KIagercdtjEdpaVz/WZXJJtB+lrqeUq/NJ6xqgDRpl7kLIKCSL7Nl81WFAw3kxOTlqdp/OMKus0bDohGUn9RsVTmn6e4qmnx6rqzt/Lx1JLlVzu65O/q6PGMgkL2zbfKloleFlQMN4sLy9bn+vSoH07OVtFqe2ykakzT2r15Grq62qpJUsdHXb3C/F9LhllV2QTubX5rGml4G25oADwdgB/D+BxAATgVsfrfwnAtwCsAJgG8EcAOm2u9REUsg6u7NPntBgbG0t0vcxkVjfa143ww/ySOCL0GX0n7bh9Xuyky14u+DyPaqZYdtNYouRtPk1aKXjzEBTjAL4B4KOuggLAywGsAbgTwEsaQmcFwJ/ZXO8qKGQdT3f3Zpv2sk2f02Jtbc37WtelG1WQHVm+YSdVq8k3hbnc20Qa+gPdi60aqGzfvt4SQWEShD09G7Oqzk6iffvUjgGrMKNI0ubTppWCNw9B0dH4u8VDUHwLwFdjx24BsArgUtP1roLCZeRWpsaeFiMjI97XutRtraYepcpQKcTjljc2swETaSqaw2fVCbTwGW677bveS1G9vXa/kUlH4bLLPXyususokrT5tKn0jOL8DRwFBYArGue/NXb82Y3jN5rycBUULi9hmabPRcClbmUdkq+jPpeNbKalLtfnsE0uI3BfhbONb6WeHn17dxWSYXl52TYdKq2jOH8Dd0Hx843zXyj57mkA7zflwTOKdEkSxCUN81JZnZvyjQp0U3CjJG5C0ng23dJCWPe+9+/sND+b7vpwSc9VUJSdogUuytvqqQPFY1fj7ynJd6ci3zchhNgvhBgWQgw//vjjOHHiBB5//HE89thjOHXqFB599FGcOXMGDz/8MNbX13H//fcDAEZGRnDoELB165pF0Qi33LKCRx55BOfOncMDDzxwPo/o3wcffBBnz57Fd77zHTz11FM4fvw4nnjiCTzxxBM4fvw4nnrqKXznO9/B2bNn8eCDD0rzeOCBB3Du3Dk88sgjOH36NI4dO+b0TABw//33Y319HQ8//DDOnDmDRx99FKdOncJjjz2GsI6OHTuG06dPa59p79693s8kr1uyqOsNjh/f/EzHj+vzuPzy9fPPdOmlq9JzOjoIH/94HT/5k+Znuumm405l3oCge97jx4FLLjkr/a639xx6e3tx4sQJ4/OqWFsj4++kK9/CAqG395z1/S68sA4gvbYH5PM+Pf/5z8/sffJ5pv5+4LOfHcH6evC3vz+bPkKJTHrEE4CXYqPF69JXJNe6zij6G+f/iOS7xwB8wpRHUqsnlSmkzRJFFUm6XiuzenIxN3WdUcSn5WlN3X2Wn/r69GU1ubsI6z7LGYUu1raqfN3dm6+znZ2VgSLpKFoJkiw9AdgO4LkWabfkWldB8QuN81u29BSnCsq4NMnCAsTWNbirjiKqJI6fn3TqbvIXpRJYKq+woY5CV76w7k2eZVXJRkeheq5o1L92Mx8vktVTK0kkKJIkD0Gxu3H+W2LH9zSOp67MllHll8CVrGzKk3Y+efxGstlQaJ4bdq7RkXi0rFGlsEqgxYnWvS6PgYHNMx6XIEEDA80zhJ4ebvPtiEpQiOC77BBCbAFQB/AuIrrV8ppRAKeI6CWRY3+EwER2NxF9X3f9tddeS8PDw95lZpo5c+YMtm3blncx2hKu+3xo13oXQowQ0bXx45kps4UQ1wohfhXALzcOXSWE+NVG2h45714hxGTs8j8E8DNCiDuEENcJIX4Xwc7s201Cgkmf2dnZvIvQtnDd5wPXezNbMsz7twHcEPn8a40EBHsijjX+74yXg4iONITMnwB4I4A5AO8FcCi74jIqdu2SGpoxLYDrPh+43pvJbEZBRG8kIqFIxyLnXUdEeyTXf46IriaiC4hoNxG9m4hsbFiZlFleXs67CG0L130+cL03U8R9FEzB6OjgZpIXXPf5wPXeDNcGY6SrqyvvIrQtXPf5wPXeTOZWT3kghJhH4JqcSYeLAZzIuxBtCtd9PrRrvfcR0Q/ED1ZSUDDpIoQYlpnMMdnDdZ8PXO/N8NITwzAMo4UFBcMwDKOFBQVjw515F6CN4brPB673CKyjYBiGYbTwjIJhGIbRwoKCYRiG0cKCgmlCCNEhhHinEOKYEGJFCPGAEOJXLK89LIQgSfpQxsUuFUKIK4QQnxFCLAohnhJCfE4Isdvy2q1CiPcLIR4XQpwRQnxNCPHTWZe5KiSse1nbJiHENRkXO3eydArIlJP3AHgHgIMARgC8DsDfCiFeSURHLK6fB/Cq2LHH0y1ieWl4Tv4SgLMInGYSgNsAfFkI8eNE9LQhi08AeAWA3wfwXQD/CcA/CiFeSESjmRW8AqRQ9wBwGMAdsWMTaZazkMiCVHBqzwTgBxG8RO+KHb8XwFGL6w8DmMn7OYqcANwMYA3AlZFjzwZwDsDbDddejVjwLgSDvW8D+Lu8n63oKUndN84lALfl/Rx5JF56YqK8HEA3gMHY8UEAPyaEeHbri1Q5XgXg60R0PgYLEU0BuA/Aqy2urQP468i15wB8GsDLhRAXpF/cSpGk7tsaFhRMlOchmFHEA0mNNf5eZZHHDwohTgghzgkhJoQQfyCE6Ey1lOXmeQAekhwfg7l+nwdgiojiPrDHEAj4K5MXr9IkqfuQASHEWSHEshDiS0KIF6dXvOLCOgomyi4AT1Jjnh1hIfK9jlEEeo0xAFsBvAbAnwL4YQBvSa+YpWYXgFOS4wsAdia4NvyeUZOk7oFgZv2/AcwC6EOgJ/qSEOJlRPSVtApZRFhQVBghxEsBfNHi1K8S0XUABIJ12E1Z2dyPiD4UO3RECHEawNuEEH9GRN+xyacN8K3jRL8PAyBZ+35D5OO/CCH+F4IZym0A/mMKZSssLCiqzb8B+FGL88KljAUAO4UQIjar2Bn53pW/AvA2ANcCYEERjGhlI/+dkI92oywAkJlyJvl92okkdb8JIloSQvwDgDcnLVjRYUFRYRpr2Y84XDIG4AIAz0GzniJcv33YoxjhaI19xQSMIVgrj3MVzPU7BuA1QojtMT3FVQBWsVm3xDSTpO5VqGZ5lYKV2UyU/4ugw+mPHX89gIcaFiKu/AaCF+mbCctWFf4OwE8JIX4oPCCE2APgRY3vTNd2Afi1yLVbAPw6gC8Q0dnUS1stktT9JoQQFyLY0/KNtApYVNgpINOEEOJ9CJaK/hDA/Qg6od8C8Goi+vvIefciiIZ1ZeNzH4B7EJhqTiKYmbwGwBsB3EFEA617iuIihOgB8ACAMwD+CIEQfQ+AZwD4cSI63TivD8CjAN5NRO+OXP9pBGbMvw9gCsAAgFcC+A9EdH8LH6V0JKl7IcQ7APwIgC9jQ5kdHttHRP/S2qdpLbz0xMQ5COA0gs1JlyLYzPXaqJBo0Inm9rOEYI38DwBcguAlHAfwnwF8JOMylwYieloI8bMAPohAsAoEGxrfFnZUDQSCOo7P+m8EcAiBAvUiBB3fz7OQMJOw7r+NYODzGgDPBPAUgv0Xbyai/9eC4ucKzygYhmEYLayjYBiGYbSwoGAYhmG0sKBgGIZhtLCgYBiGYbSwoGAYhmG0sKBgGIZhtLCgYJgIQoifE0L8HyHEyUYo2AkhxJ8JIWy8i8rye5sQ4pfTLqfkPhcJIW4VQvxE1vdi2g8WFAzTQAjxhwD+EcAKArfoLwfwMQS7y78phLjCI9u3AchcUCDYfPcnAFhQMKnDO7MZBoAQ4iUIdjt/iIh+N/LVV4UQ/xNBnI1PAXhJHuVjmDzhGQXDBPwXBC5I3hn/ouEM8X0ArhNC/HshxB4hBAkh3hg9TwhxXeP4dY3PxxD4BOpvHCchxOHGd7c2Pv+YEOLLjYhpjwsh3i2E6Ijk+cbGeXti97pVCEGN//cg8PsEAB+P3KupfAzjCwsKpu1peGD9GQBfJKIVxWmhd9Gfdcj6NQC+j2A564WN9J7YOZ8H8E8AfgnA/wDwxwBucbgHADyOjeWtP43c6x8c82EYKbz0xDBADcA2AMc054TfWespiOhbQoizAE4Q0dcVp32ciN7X+P8LDdfVvyeE+BARPWl5n7NCiG81Pn5Xcy+G8YJnFAyTbyjRv4l9/jSAHQD+XQ5lYRgpLCgYBjiBIEbBHs054XffS/nec4rPl6V8H4bxhgUF0/YQ0TkA/wzgZUKIrYrTXtX4+yUE5rMA0B07p+Zx+0sUnx9r/E3zXgzjBQsKhgl4P4LO973xL4QQz0YQkOmfiegbCEb9Z7F5eegVknzPItB/qHht7PPrEASOeqjxebrx9/y9Gsr3n5PcB4Z7MYwXrMxmGABEdK8Q4hYA726Ym34KwCkEG9j+K4BFAG9onEtCiL8G8GYhxASC6GevAHCdJOuHAbxYCPFKBBZQJ4joWOT7tzbMYb+JYIPfWwDcGlFkfxNBWM73N847C+AAglCzUeYAnATwOiHEUQBPA5giopNeFcIwEXhGwTANiOg9AH4BQA+AuwB8AUGn/CkA1xLR8cjpNwP4HIBbAfw1gK0AfkeS7TsRCJK/QdDp3xr7/tUAXobA/Pb1CDb9nTehbSyLvRqBbuQwgP8G4IuN/6NlX0cgZHYiMLf9JoBftHx0htHCoVAZJgeEELcicLnR1RAGDFNYeEbBMAzDaGFBwTAMw2jhpSeGYRhGC88oGIZhGC0sKBiGYRgtLCgYhmEYLSwoGIZhGC0sKBiGYRgt/x+4oGc61re/YQAAAABJRU5ErkJggg==", "text/plain": [ "
" ]