@@ -301,14 +301,14 @@ For example, setting $c = \frac{\pi}{10}$ gives us a very elegant cloud shape, w
301301
302302``` {code-cell} ipython3
303303output = julia(mesh, c=np.pi/10, num_iter=20)
304- kwargs = {'title': 'f(z) = z^2 + \dfrac{\pi}{10}', 'cmap': 'plasma'}
304+ kwargs = {'title': r 'f(z) = z^2 + \dfrac{\pi}{10}', 'cmap': 'plasma'}
305305
306306plot_fractal(output, **kwargs);
307307```
308308
309309``` {code-cell} ipython3
310310output = julia(mesh, c=-0.75 + 0.4j, num_iter=20)
311- kwargs = {'title': 'f(z) = z^2 - \dfrac{3}{4} + 0.4i', 'cmap': 'Greens_r'}
311+ kwargs = {'title': r 'f(z) = z^2 - \dfrac{3}{4} + 0.4i', 'cmap': 'Greens_r'}
312312
313313plot_fractal(output, **kwargs);
314314```
@@ -419,7 +419,7 @@ p.deriv()
419419
420420``` {code-cell} ipython3
421421output = newton_fractal(mesh, p, p.deriv(), num_iter=15, r=2)
422- kwargs = {'title': 'f(z) = z - \dfrac{(z^8 + 15z^4 - 16)}{(8z^7 + 60z^3)}', 'cmap': 'copper'}
422+ kwargs = {'title': r 'f(z) = z - \dfrac{(z^8 + 15z^4 - 16)}{(8z^7 + 60z^3)}', 'cmap': 'copper'}
423423
424424plot_fractal(output, **kwargs)
425425```
@@ -443,7 +443,7 @@ def d_tan(z):
443443
444444``` {code-cell} ipython3
445445output = newton_fractal(mesh, f_tan, d_tan, num_iter=15, r=50)
446- kwargs = {'title': 'f(z) = z - \dfrac{sin(z)cos(z)}{2}', 'cmap': 'binary'}
446+ kwargs = {'title': r 'f(z) = z - \dfrac{sin(z)cos(z)}{2}', 'cmap': 'binary'}
447447
448448plot_fractal(output, **kwargs);
449449```
0 commit comments