- python 3.10
- pytorch 2.1.0+cu121
- numpy 1.26.3
- pytorch-lightning 2.5.5
- polyscope 2.4.0
- tensorboard 2.20.0
- Run:
pip install torch==2.1.0+cu121 \ --index-url https://download.pytorch.org/whl/cu121 \ numpy==1.26.3
pip install pytorch-lightning polyscope tensorboard
- Download the ShapeNet dataset using this link:
https://drive.google.com/drive/folders/1MMRp7mMvRj8-tORDaGTJvrAeCMYTWU2j?usp=sharing
- Specify the parent folder where you stored the ShapeNet dataset in the
preprocesssection ofconfigs/default.yaml. - Run:
python preprocess.py
- Specify a category in the
trainsection ofconfigs/default.yaml.
You can look atcateg_to_id.jsonto see all available categories. - Specify the location of the preprocessed dataset in
configs/default.yaml. - Run:
python train.py
- You can use the following command to visualize training and validation losses.
tensorboard --logdir logs
- In the
samplesection ofconfigs/default.yaml, specify the path to the checkpoint of the trained model. By default, checkpoints of trained models are stored in thelogsfolder. You can also use the pre-trained checkpoint at the root level of the repository. - Run:
It will display a polyscope interface, allowing you to visualize multiple sampled point clouds.
python sample.py