[20250906] BOJ / G4 / 2로 몇번 나누어질까 / 이종환 #831
Merged
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
🧷 문제 링크
https://www.acmicpc.net/problem/1407
🧭 풀이 시간
30분
👀 체감 난이도
✏️ 문제 설명
자연수 N이 주어지면, 자연수를 유지하면서 N을 2로 몇 번까지 나눌 수 있는지를 생각해 볼 수 있다. 즉, N의 모든 약수 중 2의 거듭제곱 꼴이면서 가장 큰 약수를 생각하는 것이다. 예를 들어 15의 경우는 2로 한 번도 나눌 수 없으므로 2^0 = 1이 해당되고, 40의 경우는 2로 세 번까지 나눌 수 있으므로 2^3 = 8이 해당된다. 이러한 약수를 함수값으로 가지는 함수 f(x)를 정의하자. 즉, f(15) = 1이고, f(40) = 8이다.
두 자연수 A, B(A≤B)가 주어지면, A 이상 B 이하의 모든 자연수에 대해서, 그 자연수의 모든 약수 중 2의 거듭제곱 꼴이면서 가장 큰 약수들의 총 합을 구하는 프로그램을 작성하시오. 즉 아래와 같은 수식의 값을 구해야 한다.
f(A) + f(A+1) + ... + f(B-1) + f(B)
🔍 풀이 방법
범위 내에 각각의 2의 배수의 약수가 몇개인지 구한 후, 이를 큰 수부터
이런식으로 더해주면 간단히 풀 수 있다.
⏳ 회고