Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 53 additions & 8 deletions cell2location/models/_cell2location_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,7 @@ def __init__(
init_vals: Optional[dict] = None,
init_alpha=20.0,
dropout_p=0.0,
location_sampling: bool = False,
):

super().__init__()
Expand All @@ -122,6 +123,8 @@ def __init__(
if self.dropout_p is not None:
self.dropout = torch.nn.Dropout(p=self.dropout_p)

self.location_sampling = location_sampling

if (init_vals is not None) & (type(init_vals) is dict):
self.np_init_vals = init_vals
for k in init_vals.keys():
Expand Down Expand Up @@ -192,6 +195,9 @@ def __init__(
self.register_buffer("n_groups_tensor", torch.tensor(self.n_groups))

self.register_buffer("ones", torch.ones((1, 1)))
self.register_buffer("zeros", torch.zeros((1, 1)))
self.register_buffer("five", torch.tensor(5.0))
self.register_buffer("ten", torch.tensor(10.0))
self.register_buffer("ones_1_n_groups", torch.ones((1, self.n_groups)))
self.register_buffer("ones_n_batch_1", torch.ones((self.n_batch, 1)))
self.register_buffer("eps", torch.tensor(1e-8))
Expand Down Expand Up @@ -460,12 +466,47 @@ def forward(self, x_data, idx, batch_index):
# =====================Expected expression ======================= #
if not self.training_wo_observed:
# expected expression
mu = ((w_sf @ self.cell_state) * m_g + (obs2sample @ s_g_gene_add)) * detection_y_s
alpha = obs2sample @ (self.ones / alpha_g_inverse.pow(2))
# convert mean and overdispersion to total count and logits
# total_count, logits = _convert_mean_disp_to_counts_logits(
# mu, alpha, eps=self.eps
# )
if not self.location_sampling:
mu = ((w_sf @ self.cell_state) * m_g + (obs2sample @ s_g_gene_add)) * detection_y_s
alpha = obs2sample @ (self.ones / alpha_g_inverse.pow(2))
else:
# sampling location-specific cell state signatures ====
cell_state_sigma = pyro.sample(
"cell_state_sigma",
dist.Exponential(self.ten * self.ten).expand([1, 1, 1]).to_event(2),
) # (1, 1).squeeze()
cell_state = torch.exp(
torch.log(self.cell_state.unsqueeze(-3))
+ dist.Normal(self.zeros, self.ones).sample([w_sf.shape[0], self.n_factors, self.n_vars]).squeeze()
* cell_state_sigma
)
biol_mu = torch.einsum("sf,sfg->sg", w_sf, cell_state)

# sampling location-specific background counts ====
s_g_gene_add_sigma = pyro.sample(
"s_g_gene_add_sigma",
dist.Exponential(self.ten * self.ten).expand([self.n_batch, 1]).to_event(2),
) # (1, 1)
s_g_gene_add_sigma = (obs2sample @ s_g_gene_add_sigma).unsqueeze(-1)
s_g_gene_add = torch.exp(
torch.log(s_g_gene_add.unsqueeze(-3))
+ dist.Normal(self.zeros, self.ones).sample([w_sf.shape[0], self.n_batch, self.n_vars]).squeeze()
* s_g_gene_add_sigma
)
background_mu = torch.einsum("se,seg->sg", obs2sample, s_g_gene_add)

# sampling location-specific technology sensitivity ====
if False:
m_g_alpha = pyro.sample(
"m_g_alpha",
dist.Exponential(self.ten).expand([self.n_batch, 1]).to_event(2),
) # (1, 1)
m_g_alpha = obs2sample @ (self.ones / m_g_alpha.pow(2))
m_g = dist.Gamma(m_g_alpha, m_g_alpha / m_g).sample([1]).squeeze(-3)

# compute expected value ====
mu = (biol_mu * m_g + background_mu) * detection_y_s
alpha = obs2sample @ (self.ones / alpha_g_inverse.pow(2))

# =====================DATA likelihood ======================= #
# Likelihood (sampling distribution) of data_target & add overdispersion via NegativeBinomial
Expand All @@ -481,8 +522,12 @@ def forward(self, x_data, idx, batch_index):

# =====================Compute mRNA count from each factor in locations ======================= #
with obs_plate:
mRNA = w_sf * (self.cell_state * m_g).sum(-1)
pyro.deterministic("u_sf_mRNA_factors", mRNA)
if not self.location_sampling:
mRNA = w_sf * (self.cell_state * m_g).sum(-1)
pyro.deterministic("u_sf_mRNA_factors", mRNA)
else:
mRNA = torch.einsum("sf,sfg,sg->sf", w_sf, cell_state, m_g)
pyro.deterministic("u_sf_mRNA_factors", mRNA)

def compute_expected(self, samples, adata_manager, ind_x=None):
r"""Compute expected expression of each gene in each location. Useful for evaluating how well
Expand Down