Skip to content

RobertJaro/SuNeRF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SuNeRF

Solar Neural Radiance Fields for 3D Tomography

SuNeRF is a Python framework for 3D tomographic reconstructions of the solar atmosphere and heliosphere using Neural Radiance Fields (NeRFs). It performs forward modeling of optically thin observations with explicit spacecraft geometry and image-formation physics.

SuNeRF supports:

  • EUV emission tomography of the solar corona
  • White-light CME tomography using Thomson scattering

Installation

conda create -n sunerf python=3.10 -y  
conda activate sunerf  
pip install -r requirements.txt  
pip install -e .

EUV Emission Tomography

Reconstructs a 3D EUV emissivity field from multi-viewpoint EUV observations (e.g., AIA + EUVI).

Data preparation

python -m sunerf.data.prep.sdo  
  --sdo_file_path "/path/to/aia/*.fits"  
  --output_path "workspace/data/euv/aia_193"  
  --resolution 512  

python -m sunerf.data.prep.stereo  
  --stereo_file_path "/path/to/euvi/*.fts"  
  --output_path "workspace/data/euv/euvi_195"  
  --resolution 512  

Training

python -m sunerf.run_emission  
  --config "config/emission/emission_2012_08-193.yaml"

CME Tomography (White-Light)

Reconstructs the 3D electron density of CMEs using a full Thomson-scattering forward model.

CME Challenge Dataset (HAO / PUNCH)

Dataset:
https://download.hao.ucar.edu/pub/punch/cme_challenge_v2/

Download and place the data locally, for example:

mkdir -p data/cme_challenge_v2

Data preparation

python -m sunerf.data.prep.prep_hao_cme  
  --resolution 512  
  --hao_path "data/cme_challenge_v2/**/*.fits"  
  --output_path "workspace/data/cme/prepared"  
  --check_matching  

Training / reconstruction

python -m sunerf.run_thomson  
  --config "config/cme/hao_2view.yaml"

Evaluation

python -m sunerf.evaluation.cme.evaluate_cme_parameters  
  --sunerf_path "workspace/outputs/cme/save_state.snf"  
  --data_path "data/cme_challenge_v2/**/*.sav"

Configuration

All experiments are configured via YAML files in:

config/  
  cme/
  emission/  

About

3D reconstructions of the solar atmosphere using neural radiance fields

Resources

License

Stars

Watchers

Forks

Packages

No packages published