Solar Neural Radiance Fields for 3D Tomography
SuNeRF is a Python framework for 3D tomographic reconstructions of the solar atmosphere and heliosphere using Neural Radiance Fields (NeRFs). It performs forward modeling of optically thin observations with explicit spacecraft geometry and image-formation physics.
SuNeRF supports:
- EUV emission tomography of the solar corona
- White-light CME tomography using Thomson scattering
conda create -n sunerf python=3.10 -y
conda activate sunerf
pip install -r requirements.txt
pip install -e .Reconstructs a 3D EUV emissivity field from multi-viewpoint EUV observations (e.g., AIA + EUVI).
python -m sunerf.data.prep.sdo
--sdo_file_path "/path/to/aia/*.fits"
--output_path "workspace/data/euv/aia_193"
--resolution 512
python -m sunerf.data.prep.stereo
--stereo_file_path "/path/to/euvi/*.fts"
--output_path "workspace/data/euv/euvi_195"
--resolution 512 python -m sunerf.run_emission
--config "config/emission/emission_2012_08-193.yaml"Reconstructs the 3D electron density of CMEs using a full Thomson-scattering forward model.
Dataset:
https://download.hao.ucar.edu/pub/punch/cme_challenge_v2/
Download and place the data locally, for example:
mkdir -p data/cme_challenge_v2python -m sunerf.data.prep.prep_hao_cme
--resolution 512
--hao_path "data/cme_challenge_v2/**/*.fits"
--output_path "workspace/data/cme/prepared"
--check_matching python -m sunerf.run_thomson
--config "config/cme/hao_2view.yaml"python -m sunerf.evaluation.cme.evaluate_cme_parameters
--sunerf_path "workspace/outputs/cme/save_state.snf"
--data_path "data/cme_challenge_v2/**/*.sav"All experiments are configured via YAML files in:
config/
cme/
emission/