Skip to content

RobotControlStack/agents

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Agents

Agents is a python library that allows to separate next action prediction from policy networks from action execution in simulated or real environments. It defines an interface for policies and for environments. The policies run independent in their own virtual environment, potentially on a different computer, and can be queried for an action (in principle similar to the chatgpt api).

Why is this useful?

  • Separation of dependencies by using two different python environments: Some times dependencies contradict e.g. pytorch and jax
  • Some robot hardware requires a real time linux kernel which does not easily allow you to use an Nvidia GPU.
  • Separate deployment and model code

This library is a byproduct of the Refined Policy Distillation (RPD) paper which distilled VLAs into expert policies using Reinforcement Learning. The work also includes a section on related engineering challenges regarding jax and pytorch.

Installation

Local Installation

git clone https://github.com/juelg/agents.git
cd agents
pip install -ve .

Repo Installation

pip install git+https://github.com/juelg/agents.git

Environment and Policy Installation

On top of agents you can then install a simulation environment where the agent acts. We currently support maniskill with more to come. In order to avoid dependency conflicts, use a second conda/pip environment to install your policy. We currently support octo and openvla.

Octo

To use Octo as an agent/policy you need to create a new conda environment:

conda create -n octo python=3.10
conda activate octo
conda install nvidia/label/cuda-11.8.0::cuda --no-channel-priority
conda install conda-forge::cudnn=8.9
# octo dependencies
pip install git+https://github.com/octo-models/octo.git@241fb3514b7c40957a86d869fecb7c7fc353f540
pip install -r agents/utils/fixed_octo_requirements.txt
# for gpu support:
pip install --upgrade "jax[cuda11_pip]==0.4.20" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html

Verify that the jax installation was successful and that jax finds your gpu. Open a python shell in the same conda env and type

from jax.lib import xla_bridge
# this should output "gpu" if the gpu installation was successful
print(xla_bridge.get_backend().platform)

Install the agents library on top:

pip install git+https://github.com/juelg/agents.git

For more details, see the Octo github page.

Troubleshooting

If pip conplains about dependency issues than it might have happened that torch somehow slipped in. Check if you have any torch packages installed by

pip freeze | grep torch
# if any, uninstall them e.g.
pip uninstall arm_pytorch_utilities
pip uninstall pytorch-seed
pip uninstall pytorch_kinematics

OpenVLA

To use OpenVLA, create a new conda environment:

conda create -n openvla python=3.10 -y
conda activate openvla
conda install pytorch torchvision torchaudio pytorch-cuda=12.4 -c pytorch -c nvidia -y

Install flash attention:

pip install packaging ninja
ninja --version; echo $?  # Verify Ninja --> should return exit code "0"
pip install "flash-attn==2.5.5" --no-build-isolation
# if you run into issues try `pip cache remove flash_attn` first

Install OpenVLA

pip install git+https://github.com/openvla/openvla.git@46b752f477cc5773cc1234b2e82c0e2130e4e890

Install the agents library on top:

pip install git+https://github.com/juelg/agents.git

For more details, see the OpenVLA github page.

OpenPi / Pi0

To use OpenPi, create a new conda environment:

conda create -n openpi python=3.11 -y
conda activate openpi

Clone the repo and install it.

git clone --recurse-submodules git@github.com:Physical-Intelligence/openpi.git
# Or if you already cloned the repo:
git submodule update --init --recursive
# install dependencies
GIT_LFS_SKIP_SMUDGE=1 uv sync
GIT_LFS_SKIP_SMUDGE=1 uv pip install -e .

For more details see openpi's github.

Usage

To start an agents server use the start-server command where kwargs is a dictionary of the constructor arguments of the policy you want to start e.g.

# octo
python -m agents start-server octo --host localhost --port 8080 --kwargs '{"checkpoint_path": "hf://Juelg/octo-base-1.5-finetuned-maniskill", "checkpoint_step": None, "horizon": 1, "unnorm_key": []}'
# openvla
python -m agents start-server openvla --host localhost --port 8080 --kwargs '{"checkpoint_path": "Juelg/openvla-7b-finetuned-maniskill", "device": "cuda:0", "attn_implementation": "flash_attention_2", "unnorm_key": "maniskill_human:7.0.0", "checkpoint_step": 40000}'
# openpi
python -m agents start-server openpi --port=8080 --host=localhost --kwargs='{"checkpoint_path": "<path to checkpoint>/{checkpoint_step}", "train_config_name": "pi0_rcs", "checkpoint_step": <checkpoint_step>}' # leave "{checkpoint_step}" it will be replaced, "train_config_name" is the key for the training config

There is also the run-eval-during-training command to evaluate a model during training, so a single checkpoint. The run-eval-post-training command evaluates a range of checkpoints in parallel. In both cases environment and arguments as well as policy and arguments and wandb config for logging can be passed as CLI arguments.

Contribution

New Policy

In order to extend the library with a new policy network, extend the Agent class in policies.py. It is important to only invoke policy specific imports in the class functions, as each policy can have its own dependencies.

New Environment

In order to extend the library with a new agent environment, extend the EvaluatorEnv class in evaluator_envs.py.

Developer Tools

Install the following dev dependencies:

pip install -ve '.[dev]'

The following dev tools are provided:

# format the code
make format

# lint the code
make lint

# run tests
make test

Citation

If you find the agent useful for your work, please consider citing the original work behind it:

@inproceedings{juelg2025refinedpolicydistillationvla,
    title={{Refined Policy Distillation}: {F}rom {VLA} Generalists to {RL} Experts}, 
    author={Tobias Jülg and Wolfram Burgard and Florian Walter},
    year={2025},
    booktitle={Proc.~of the IEEE/RSJ Int.~Conf.~on Intelligent Robots and Systems (IROS)},
    note={Accepted for publication.}
}

About

Modular VLA and Environment interfaces.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published