Skip to content

Conversation

@nmitra28
Copy link
Contributor

DomainRandomization LearningProgressCurriculum

other methods commented out due to failure.

@nmitra28
Copy link
Contributor Author

  1. DomainRandomization with seed! SUCCESSFUL
  2. DomainRandomization without seed! SUCCESSFUL
  3. LearningProgressCurriculum with seed! SUCCESSFUL
  4. LearningProgressCurriculum without seed! SUCCESSFUL
  5. SequentialCurriculum with seed! SUCCESSFUL
  6. SequentialCurriculum without seed! SUCCESSFUL
  7. CentralizedPrioritizedLevelReplay with seed! SUCCESSFUL
  8. CentralizedPrioritizedLevelReplay without seed! SUCCESSFUL
  9. PrioritizedLevelReplay with seed! SUCCESSFUL
  10. PrioritizedLevelReplay without seed! SUCCESSFUL

@nmitra28
Copy link
Contributor Author

python -m syllabus.examples.training_scripts.cleanrl_procgen_plr --env-id="bigfish" --seed=1 --num-envs=4 --num-eval-episodes=3

For these metrics the expected return is :

global_step=164, episodic_return=1.0
global_step=300, episodic_return=0.0
global_step=380, episodic_return=3.0
global_step=420, episodic_return=0.0
global_step=592, episodic_return=1.0
global_step=728, episodic_return=4.0
global_step=740, episodic_return=0.0
global_step=760, episodic_return=3.0
global_step=908, episodic_return=1.0
global_step=936, episodic_return=4.0
SPS: 63
global_step=1040, episodic_return=0.0
global_step=1140, episodic_return=3.0
global_step=1200, episodic_return=0.0
global_step=1348, episodic_return=0.0
global_step=1484, episodic_return=4.0
global_step=1496, episodic_return=0.0
global_step=1564, episodic_return=2.0
global_step=1684, episodic_return=0.0
global_step=1836, episodic_return=4.0
global_step=1844, episodic_return=0.0
global_step=1864, episodic_return=3.0
global_step=1984, episodic_return=0.0
SPS: 60
global_step=2140, episodic_return=0.0
global_step=2200, episodic_return=2.0
global_step=2264, episodic_return=0.0
global_step=2364, episodic_return=4.0
global_step=2404, episodic_return=0.0
global_step=2540, episodic_return=0.0
global_step=2580, episodic_return=3.0
global_step=2680, episodic_return=0.0
global_step=2812, episodic_return=6.0
global_step=2820, episodic_return=0.0
global_step=2964, episodic_return=3.0
global_step=2968, episodic_return=0.0
SPS: 60
global_step=3116, episodic_return=0.0
global_step=3160, episodic_return=4.0
global_step=3244, episodic_return=0.0
global_step=3320, episodic_return=3.0
global_step=3388, episodic_return=0.0
global_step=3512, episodic_return=0.0
global_step=3656, episodic_return=0.0
global_step=3704, episodic_return=3.0
global_step=3728, episodic_return=4.0
global_step=3812, episodic_return=0.0
global_step=3972, episodic_return=0.0
global_step=4000, episodic_return=4.0
global_step=4060, episodic_return=2.0
SPS: 61
global_step=4120, episodic_return=0.0
global_step=4260, episodic_return=0.0
global_step=4400, episodic_return=0.0
global_step=4440, episodic_return=3.0
global_step=4528, episodic_return=0.0
global_step=4676, episodic_return=0.0
global_step=4724, episodic_return=6.0
global_step=4760, episodic_return=3.0
global_step=4792, episodic_return=0.0
global_step=4820, episodic_return=3.0
global_step=4972, episodic_return=1.0
global_step=5108, episodic_return=0.0
SPS: 60
global_step=5180, episodic_return=3.0
global_step=5288, episodic_return=1.0
global_step=5400, episodic_return=0.0
global_step=5540, episodic_return=0.0
global_step=5564, episodic_return=3.0
global_step=5572, episodic_return=3.0
global_step=5676, episodic_return=0.0
global_step=5712, episodic_return=6.0
global_step=5816, episodic_return=0.0
global_step=5948, episodic_return=3.0
global_step=5976, episodic_return=0.0
global_step=6120, episodic_return=0.0
SPS: 60
global_step=6252, episodic_return=0.0
global_step=6328, episodic_return=3.0
global_step=6404, episodic_return=1.0
global_step=6412, episodic_return=4.0
global_step=6556, episodic_return=0.0
global_step=6676, episodic_return=4.0
global_step=6688, episodic_return=4.0
global_step=6700, episodic_return=0.0
global_step=6836, episodic_return=0.0
global_step=6964, episodic_return=0.0
global_step=7068, episodic_return=3.0
global_step=7136, episodic_return=1.0

.....................

@nmitra28 nmitra28 force-pushed the nimitra/seedunittest branch from 7acc1f5 to 0bf2188 Compare July 2, 2024 07:36
@nmitra28
Copy link
Contributor Author

nmitra28 commented Jul 2, 2024

#11 DomainRandomization with seed with sample_weights
space = TaskSpace(gym.spaces.Discrete(4), ["a", "b", "c","d"])
c = DomainRandomization(task_space = space, seed = seed, sample_weights = [0.6,0.2,0.1,0.1])
if seed_test(c = c) :
    print("DomainRandomization with seed with sample weights! SUCCESSFUL")

#12: DomainRandomization without seed
c = DomainRandomization(task_space = space, sample_weights = [0.3,0.2,0.4,0.1])
if no_seed_test(c = c) :
    print("DomainRandomization without seed with sample weights! SUCCESSFUL")
    

[0]
[0]
[0]
[0]
[0]
DomainRandomization with seed with sample weights! SUCCESSFUL
[3]
[0]
[2]
[2]
[2]
DomainRandomization without seed with sample weights! SUCCESSFUL

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant