Skip to content

SFGLab/HiCDiffusionLooping

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

57 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HiCDiffusionLooping

HiCDiffusion based models for prediction of chromatin loops in human genome

conda env create -n hicdiffusion python=3.11
conda activate hicdiffusion
pip install -r requirements.txt
pip install -e .

setup raw data (for W&B only)

python scripts/log_raw_data.py
python scripts/log_raw_data_v2.py

to run main pipeline (result will be saved to ./data)

export WANDB_CACHE_DIR="./data/wandb"
export SINGULARITY_BIND="./data"
bash scripts/pull_tools.sh # download singularity images with genomics binaries
bash scripts/data_pipeline.sh # preprocess data and generate train and test pairs
python scripts/train_3d_cnn.py encoder_pretrain
python scripts/train_full_model.py full_model # will expect ./data/encoder_pretrain/checkpoint-90000

in order to run without W&B:

  • export WANDB_DISABLED=true
  • download manually raw data requried from data/4DN*.tsv
  • modify scripts/data_pipeline.sh to replace artifact names with full path to files
  • modify scripts/train*.py to replace WandbArtifact(...).path objects to pathlib.Path('path/to/file')

About

HiCDiffusion based models for prediction of 3D interactions in genome

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published