-
Notifications
You must be signed in to change notification settings - Fork 9
Model
Shanu Kumar edited this page Aug 2, 2017
·
10 revisions
Our model consists of
model = nn.Sequential()
model:add(nn.SpatialConvolution(3,6,5,5))
model:add(nn.SpatialMaxPooling(2,2,2,2))
model:add(nn.ReLU())
model:add(nn.SpatialConvolution(6,16,5,5))
model:add(nn.SpatialMaxPooling(2,2,2,2))
model:add(nn.ReLU())
model:add(nn.View(16*2*2))
model:add(nn.Linear(16*2*2,120))
model:add(nn.ReLU())
model:add(nn.Linear(120,80))
model:add(nn.ReLU())
model:add(nn.Linear(80,36))
model:add(nn.LogSoftMax())

We have train our model upto 100 iterations.
module = nn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH)
-
kW: The kernel width of the convolution. -
kh: The kernel height of the convolution. Filter used is of size5x5.
module = nn.SpatialMaxPooling(kW, kH, dW, dH)
-
kW: The kernel width of the convolution. -
kh: The kernel height of the convolution. -
dW: The step of the convolution in the width dimension. -
dh: The step of the convolution in the height dimension.
ReLU is defined asf(x) = max(0,x)
LogSoftmax is defined as f_i(x) = log(1/a exp(x_i)), where a = sum_j exp(x_j).