CHIPSTB
First create a conda environment: Install miniforge https://github.com/conda-forge/miniforge
For example:
wget "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh"
Based on your system requirements, you'll get a file something like 'Miniforge3-XYZ'.
bash Miniforge3-$(uname)-$(uname -m).sh
Now, make a conda environment:
conda create --name my_chipstb python=3.11 -y
conda activate my_chipstb
git clone https://github.com/atomgptlab/chipstb.git
cd chipstb
pip install -e .
Installing TB3Py
wget https://julialang-s3.julialang.org/bin/linux/x64/1.11/julia-1.11.5-linux-x86_64.tar.gz
tar -xvzf julia-1.11.5-linux-x86_64.tar.gz
export PATH=julia-1.11.5/bin:$PATH
julia --version
julia -e 'using Pkg; Pkg.add(["ThreeBodyTB", "Plots"]); Pkg.precompile()'
Installing DFTB+
conda install mamba -y -q
mamba install 'dftbplus=*=nompi_*' -y
mamba install dftbplus-tools dftbplus-python -y
wget https://zenodo.org/records/14289468/files/ParameterSets.zip
unzip ParameterSets.zip
Installing SlaKoNet
git clone https://github.com/atomgptlab/slakonet.git
cd slakonet
pip install -e .
predict_slakonet.py --jid JVASP-1002
python chipstb/run_chipstb.py --input_file chipstb/tb_input.json
Note: This project was originally developed under the github.com/usnistgov organization and is now maintained here by the lead developer.