Skip to content

cmcin019/AV_Image_Analysis

Repository files navigation

Environment setup

Clone the repo: git clone https://github.com/cmcin019/AV_Image_Analysis.git

  1. Install conda for Linux

    wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
    bash Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda
    $HOME/miniconda/bin/conda init bash
    
  2. Create conda environment

    conda env create -f conda_env.yml
    conda activate AV_ENV
    
    cd AV_Image_Analysis
    
  3. Create checkpoints folder

    mkdir checkpoints
    
  4. Download checkpoints from add them to the checkpoints folder PSPNET https://drive.google.com/file/d/1ydBpkFAZ0CX7BD3iALGTr03UUUd_sfXn/view?usp=sharing

    DEPTH https://drive.google.com/file/d/13XS8X5p_mS_-SBuEsw1Sw7yGVUvYg0tY/view?usp=sharing

  5. Download big lama folder and add it to the repository Big-LAMA https://drive.google.com/drive/folders/17l_wIZhZ-YWi_MUtCiz4164TnNr96Xxx?usp=sharing

  6. Install mmcv and depth library

    pip install mmcv-full==1.3.13 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html
    pip install -e .
    
  7. Save path

    export TORCH_HOME=$(pwd) && export PYTHONPATH=.
    

Run

Compute SEGMENTATION and INPAINTING videos

python inpainting_test.py model.path=$(pwd)

Compute DEPTH video

python tools/test.py configs/depthformer/depthformer_swinl_22k_w7_kitti.py \
    checkpoints/depthformer_swinl_22k_kitti.pth \
    --show-dir road_depth

Compute road detection example

python road_detect_test.py

Acknowledgments

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published