Skip to content
This repository was archived by the owner on Aug 6, 2025. It is now read-only.
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion senteval/snli.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ def run(self, params, batcher):
logging.info("PROGRESS (encoding): %.2f%%" %
(100 * ii / n_labels))
self.X[key] = np.vstack(enc_input)
self.y[key] = [dico_label[y] for y in mylabels]
self.y[key] = np.array([dico_label[y] for y in mylabels])

config = {'nclasses': 3, 'seed': self.seed,
'usepytorch': params.usepytorch,
Expand Down
14 changes: 7 additions & 7 deletions senteval/tools/validation.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ def run(self):
clf.fit(X_in_train, y_in_train,
validation_data=(X_in_test, y_in_test))
else:
clf = LogisticRegression(C=reg, random_state=self.seed)
clf = LogisticRegression(C=reg, multi_class='auto', solver='liblinear', random_state=self.seed)
clf.fit(X_in_train, y_in_train)
regscores.append(clf.score(X_in_test, y_in_test))
scores.append(round(100*np.mean(regscores), 2))
Expand All @@ -97,7 +97,7 @@ def run(self):

clf.fit(X_train, y_train, validation_split=0.05)
else:
clf = LogisticRegression(C=optreg, random_state=self.seed)
clf = LogisticRegression(C=optreg, multi_class='auto', solver='liblinear', random_state=self.seed)
clf.fit(X_train, y_train)

self.testresults.append(round(100*clf.score(X_test, y_test), 2))
Expand Down Expand Up @@ -149,7 +149,7 @@ def run(self):
seed=self.seed)
clf.fit(X_train, y_train, validation_data=(X_test, y_test))
else:
clf = LogisticRegression(C=reg, random_state=self.seed)
clf = LogisticRegression(C=reg, multi_class='auto', solver='liblinear', random_state=self.seed)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
scanscores.append(score)
Expand All @@ -171,7 +171,7 @@ def run(self):
seed=self.seed)
clf.fit(self.train['X'], self.train['y'], validation_split=0.05)
else:
clf = LogisticRegression(C=optreg, random_state=self.seed)
clf = LogisticRegression(C=optreg, multi_class='auto', solver='liblinear', random_state=self.seed)
clf.fit(self.train['X'], self.train['y'])
yhat = clf.predict(self.test['X'])

Expand Down Expand Up @@ -217,7 +217,7 @@ def run(self):
clf.fit(self.X['train'], self.y['train'],
validation_data=(self.X['valid'], self.y['valid']))
else:
clf = LogisticRegression(C=reg, random_state=self.seed)
clf = LogisticRegression(C=reg, multi_class='auto', solver='liblinear', random_state=self.seed)
clf.fit(self.X['train'], self.y['train'])
scores.append(round(100*clf.score(self.X['valid'],
self.y['valid']), 2))
Expand All @@ -227,7 +227,7 @@ def run(self):
devaccuracy = np.max(scores)
logging.info('Validation : best param found is reg = {0} with score \
{1}'.format(optreg, devaccuracy))
clf = LogisticRegression(C=optreg, random_state=self.seed)
clf = LogisticRegression(C=optreg, multi_class='auto', solver='liblinear', random_state=self.seed)
logging.info('Evaluating...')
if self.usepytorch:
clf = MLP(self.classifier_config, inputdim=self.featdim,
Expand All @@ -238,7 +238,7 @@ def run(self):
clf.fit(self.X['train'], self.y['train'],
validation_data=(self.X['valid'], self.y['valid']))
else:
clf = LogisticRegression(C=optreg, random_state=self.seed)
clf = LogisticRegression(C=optreg, multi_class='auto', solver='liblinear', random_state=self.seed)
clf.fit(self.X['train'], self.y['train'])

testaccuracy = clf.score(self.X['test'], self.y['test'])
Expand Down