URGED: URban mitigation and adaptation strategies Gauging through Empirical functions and Data products
URGED is an analytical framework for assessing the impact of urban green spaces (UGS) on heat mitigation and adaptation strategies in cities worldwide. The project combines empirical data on urban vegetation, local climate zones, and heat metrics to quantify the cooling effects of green infrastructure and project future climate scenarios.
- Multi-city analysis: Coverage of 357 cities globally with UGS data
- Climate integration: Analysis across Köppen-Geiger climate zones and Local Climate Zones (LCZ)
- Heat metrics: Multiple thermal indicators including temperature, cooling degree hours, and WBGT
- Future projections: Climate change impact assessments and policy simulations
- Population exposure: Heat exposure analysis by city and urban form
URGED/
├── 00_sourcer.R # Main initialization and helper functions loader
├── 0_*.R # Data preparation and database building scripts
├── 1_*.R # Analysis scripts (elasticities, summaries)
├── 2_*.R # Future projections and visualizations
├── 3_*.R # Output generation scripts
├── 4_*.R # Policy simulations and data processing
├── 5_*.R # Population and heat exposure analysis
├── support/ # Helper functions and utilities
├── figures_scripts/ # Scripts for generating publication figures
└── old/ # Legacy code (archived)
All required input data files are available from the Zenodo repository.
Key datasets:
- Urban Green Space (UGS) point data with Green View Index (GVI)
- Local Climate Zone (LCZ) classifications
- Global Human Settlement (GHS) data
- Köppen-Geiger climate classifications
- Urban climate data (URBCLIM)
- Land surface temperature (LST)
- Humidity data
Results are written to folders outside this repository:
results/- Main analysis outputsresults/regtab/- Regression tables- Intermediate files saved as
.rdsor.RData
Database Construction:
0_build_cities_database.R- Constructs city-level database0_build_ugspoints_database.R- Creates UGS points database with all attributes0_build_ugspoints_citynames.R- Harmonizes city names across datasets0_citynames_harmonization.R- Additional city name standardization
Supporting Data Processing:
0_calculate_climate_change_markups.R- Computes future climate adjustments0_wbt_wbgt.R- Calculates Wet Bulb Globe Temperature metrics0_tstats_city_lcz_urbclim.R- Temperature statistics by city and LCZ
Outputs and Templates:
0_output_template.R- Defines output structure0_show_ugs_policy_meaning.R- UGS policy interpretation0_table_sgslevel_bylcz.R- Summary tables by LCZ
Elasticity Estimation:
1_monthly_ugs_elasticities.R- Monthly UGS-temperature relationships1_monthly_ugs_elasticities_WBGT.R- WBGT-based elasticities1_monthly_ugs_elasticities_italy.R- Italy-specific analysis1_summary_table_compare_across_metrics.R- Cross-metric comparisons
2_project_future_ugs_pointwise.R- Point-level future UGS projections2ALPS_project_future_ugs_pointwise.R- ALPS region projections2_plot_ugs_frontrunner_cities.R- Visualization of leading cities
4_policy_simulation_climate_change_ugs_heat_metrics.r- Climate policy scenarios4_process_humidity_data.R- Humidity data processing4_process_lst_data.R- Land surface temperature processing
5_pop_bycity_bylcz.R- Population distribution by city and LCZ5_pop_heat_exposure.R- Heat exposure population assessments
3_write_output_chilled.R- Standard output generation3_write_output_chilled_ALPS.R- ALPS-specific outputs
Legacy dataset (180 cities):
ugs/after_points_030624_complete.rds
Extended dataset (357 cities):
ugs/after_points_100425_completedatabase.rds
Key variables:
city,country,year- Geographic and temporal identifiersout_b,out_b_mean,out_b_min,out_b_max- Green View Index metricsx,y- Spatial coordinateslcz_filter_v3- Local Climate Zone classificationID_HDC_G0- GHS identifierCls,Cls_short- Köppen-Geiger climate zonesUC_NM_LST- Urban center name
Dependent Variables:
my_cooling_degree_hours_curpol- Cooling degree hours (current policy)my_urbclim_T2M_daily_mean_max_curpol- Daily maximum temperaturemy_urbclim_T2M_daily_mean_min_curpol- Daily minimum temperature
Independent Variables:
Cls/Cls_short- Köppen-Geiger climate classificationlcz_filter_v3- Local climate zone (urban form)
We omit the land cover class "lightweight low-rise" class (LCZ == 7) from some analyses, as it contains only a few informal settlement data points in Lagos.
The same applies to the Heavy Industry (LCZ == 10) class.
We have cities in the Tropical, Dry, Temperate, Continental climate zones. None in the Polar KGC.
Köppen-Geiger Zones: The analysis covers cities in Tropical (A), Dry (B), Temperate (C), and Continental (D) climate zones. No cities in Polar (E) zones are included.
Local Climate Zones: Analysis omits LCZ 7 ("lightweight low-rise") which contains limited data from informal settlements in Lagos.
- Cls: Full Köppen-Geiger classification
- Cls_short / Cls_main: First letter of Köppen-Geiger zone
- R (version 4.0 or higher recommended)
- Required R packages (loaded via
00_sourcer.R) - Input data from Zenodo repository
- Clone this repository:
git clone https://github.com/giacfalk/URGED.git
cd URGED-
Download input data from Zenodo
-
Set up folder structure (create
results/directory outside repository) -
Run the initialization script:
source("00_sourcer.R")Execute scripts in numerical order:
# 1. Build databases
source("0_build_cities_database.R")
source("0_build_ugspoints_database.R")
# 2. Calculate metrics
source("0_calculate_climate_change_markups.R")
source("0_wbt_wbgt.R")
# 3. Run analyses
source("1_monthly_ugs_elasticities.R")
source("2_project_future_ugs_pointwise.R")
# 4. Generate outputs
source("3_write_output_chilled.R")Additional documentation files:
Code_Descriptions.md- Detailed script descriptionsColorCoding.md- Color schemes for visualizationsfiles_to_be_updated_new_gvi_data.txt- Data update tracking
If you use this code or data in your research, please cite:
@dataset{urged_2025,
author = {[Falchetta, Giacomo and Lohrey, Steffen]},
title = {Street green space is relevant but not sufficient for adapting to growing urban heat in world cities},
year = {2025},
publisher = {Preprint}
}Giacomo Falcetta: falchetta@iiasa.ac.at Steffen Lohrey: lohrey@iiasa.ac.at
Note: This is an active research project. Code and documentation are continuously updated.