Proximity Graph Networks (torch_pgn) is a pytorch toolkit allowing for the modular application of multiple different encoder architectures to cheminformatic tasks centered around protein-ligand complexes. Alpha version of documentation is available at: https://torch-pgn.readthedocs.io/en/latest/index.html.
torch-pgn either be installed from PyPi using the pip command or from source. We assume that all users are using conda, if you do not have conda, please install Miniconda from https://conda.io/miniconda.html.
conda create --name torch_pgn python=3.7conda activate torch_pgnpip install torch_pgnconda install pytorch-sparse -c pygconda install -c conda-forge openbabel
conda create --name torch_pgn python=3.7conda activate torch_pgnconda install pytorch==1.13.1 pytorch-cuda=11.7 -c pytorch -c nvidiaconda install pyg -c pygconda install pytorch-sparse -c pygconda install -c conda-forge openbabelpip install torch_pgn
git clone https://github.com/keiserlab/torch_pgn/torch_pgn.gitcd torch_pgnconda env create -f environment.ymlconda activate torch_pgnpip install -e