Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions mlir/lib/Dialect/Linalg/Transforms/Specialize.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -316,6 +316,18 @@ static FailureOr<LinalgOp> specializeLinalgConvolutions(RewriterBase &rewriter,
CONV_OP_SPECIALIZER(linalg::PoolingNhwcSumOp);
CONV_OP_SPECIALIZER(linalg::PoolingNhwcMaxUnsignedOp);
CONV_OP_SPECIALIZER(linalg::PoolingNhwcMinUnsignedOp);
CONV_OP_SPECIALIZER(linalg::PoolingNchwSumOp);
CONV_OP_SPECIALIZER(linalg::PoolingNchwMaxOp);
CONV_OP_SPECIALIZER(linalg::PoolingNwcSumOp);
CONV_OP_SPECIALIZER(linalg::PoolingNcwSumOp);
CONV_OP_SPECIALIZER(linalg::PoolingNwcMaxOp);
CONV_OP_SPECIALIZER(linalg::PoolingNwcMaxUnsignedOp);
CONV_OP_SPECIALIZER(linalg::PoolingNcwMaxOp);
CONV_OP_SPECIALIZER(linalg::PoolingNwcMinOp);
CONV_OP_SPECIALIZER(linalg::PoolingNwcMinUnsignedOp);
CONV_OP_SPECIALIZER(linalg::PoolingNdhwcSumOp);
CONV_OP_SPECIALIZER(linalg::PoolingNdhwcMaxOp);
CONV_OP_SPECIALIZER(linalg::PoolingNdhwcMinOp);
#undef CONV_OP_SPECIALIZER
return failure();
}
Expand Down
315 changes: 315 additions & 0 deletions mlir/lib/Dialect/Linalg/Utils/Utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1684,6 +1684,321 @@ bool isaConvolutionOpOfType<linalg::PoolingNhwcMinUnsignedOp>(
.matchBody();
}

template <>
bool isaConvolutionOpOfType<linalg::PoolingNchwSumOp>(
LinalgOp op, SmallVector<int64_t> *dilations,
SmallVector<int64_t> *strides) {
if (isa<linalg::PoolingNchwSumOp>(op))
return true;

assert(isaConvolutionOpInterface(op) &&
"expected op to implement ConvolutionOpInterface");

ConvMatcherBuilder m(op, /*spatialRank=*/2, dilations, strides,
PoolingType::Sum);
AffineExpr N = m.dim(0);
AffineExpr C = m.dim(1);
AffineExpr H = m.dim(2);
AffineExpr W = m.dim(3);
AffineExpr h = m.dim(4);
AffineExpr w = m.dim(5);

return m.matchStride(/*iDim=*/2, /*fDim=*/0, /*oDim=*/2, /*idx=*/0)
.matchStride(/*iDim=*/3, /*fDim=*/1, /*oDim=*/3, /*idx=*/1)
.matchMaps({/*inputMap=*/{N, C, m.strided(H, h, 0), m.strided(W, w, 1)},
/*filterMap=*/{h, w},
/*outputMap=*/{N, C, H, W}})
.matchBody();
}

template <>
bool isaConvolutionOpOfType<linalg::PoolingNchwMaxOp>(
LinalgOp op, SmallVector<int64_t> *dilations,
SmallVector<int64_t> *strides) {
if (isa<linalg::PoolingNchwMaxOp>(op))
return true;

assert(isaConvolutionOpInterface(op) &&
"expected op to implement ConvolutionOpInterface");

ConvMatcherBuilder m(op, /*spatialRank=*/2, dilations, strides,
PoolingType::MaxSigned);
AffineExpr N = m.dim(0);
AffineExpr C = m.dim(1);
AffineExpr H = m.dim(2);
AffineExpr W = m.dim(3);
AffineExpr h = m.dim(4);
AffineExpr w = m.dim(5);

return m.matchStride(/*iDim=*/2, /*fDim=*/0, /*oDim=*/2, /*idx=*/0)
.matchStride(/*iDim=*/3, /*fDim=*/1, /*oDim=*/3, /*idx=*/1)
.matchMaps({/*inputMap=*/{N, C, m.strided(H, h, 0), m.strided(W, w, 1)},
/*filterMap=*/{h, w},
/*outputMap=*/{N, C, H, W}})
.matchBody();
}

template <>
bool isaConvolutionOpOfType<linalg::PoolingNwcSumOp>(
LinalgOp op, SmallVector<int64_t> *dilations,
SmallVector<int64_t> *strides) {
if (isa<linalg::PoolingNwcSumOp>(op))
return true;

assert(isaConvolutionOpInterface(op) &&
"expected op to implement ConvolutionOpInterface");

ConvMatcherBuilder m(op, /*spatialRank=*/1, dilations, strides,
PoolingType::Sum);
AffineExpr N = m.dim(0);
AffineExpr W = m.dim(1);
AffineExpr C = m.dim(2);
AffineExpr w = m.dim(3);

return m.matchStride(/*iDim=*/1, /*fDim=*/0, /*oDim=*/1, /*idx=*/0)
.matchMaps({/*inputMap=*/{N, m.strided(W, w, 0), C},
/*filterMap=*/{w},
/*outputMap=*/{N, W, C}})
.matchBody();
}

template <>
bool isaConvolutionOpOfType<linalg::PoolingNcwSumOp>(
LinalgOp op, SmallVector<int64_t> *dilations,
SmallVector<int64_t> *strides) {
if (isa<linalg::PoolingNcwSumOp>(op))
return true;

assert(isaConvolutionOpInterface(op) &&
"expected op to implement ConvolutionOpInterface");

ConvMatcherBuilder m(op, /*spatialRank=*/1, dilations, strides,
PoolingType::Sum);
AffineExpr N = m.dim(0);
AffineExpr C = m.dim(1);
AffineExpr W = m.dim(2);
AffineExpr w = m.dim(3);

return m.matchStride(/*iDim=*/2, /*fDim=*/0, /*oDim=*/2, /*idx=*/0)
.matchMaps({/*inputMap=*/{N, C, m.strided(W, w, 0)},
/*filterMap=*/{w},
/*outputMap=*/{N, C, W}})
.matchBody();
}

template <>
bool isaConvolutionOpOfType<linalg::PoolingNwcMaxOp>(
LinalgOp op, SmallVector<int64_t> *dilations,
SmallVector<int64_t> *strides) {
if (isa<linalg::PoolingNwcMaxOp>(op))
return true;

assert(isaConvolutionOpInterface(op) &&
"expected op to implement ConvolutionOpInterface");

ConvMatcherBuilder m(op, /*spatialRank=*/1, dilations, strides,
PoolingType::MaxSigned);
AffineExpr N = m.dim(0);
AffineExpr W = m.dim(1);
AffineExpr C = m.dim(2);
AffineExpr w = m.dim(3);

return m.matchStride(/*iDim=*/1, /*fDim=*/0, /*oDim=*/1, /*idx=*/0)
.matchMaps({/*inputMap=*/{N, m.strided(W, w, 0), C},
/*filterMap=*/{w},
/*outputMap=*/{N, W, C}})
.matchBody();
}

template <>
bool isaConvolutionOpOfType<linalg::PoolingNwcMaxUnsignedOp>(
LinalgOp op, SmallVector<int64_t> *dilations,
SmallVector<int64_t> *strides) {
if (isa<linalg::PoolingNwcMaxUnsignedOp>(op))
return true;

assert(isaConvolutionOpInterface(op) &&
"expected op to implement ConvolutionOpInterface");

ConvMatcherBuilder m(op, /*spatialRank=*/1, dilations, strides,
PoolingType::MaxUnsigned);
AffineExpr N = m.dim(0);
AffineExpr W = m.dim(1);
AffineExpr C = m.dim(2);
AffineExpr w = m.dim(3);

return m.matchStride(/*iDim=*/1, /*fDim=*/0, /*oDim=*/1, /*idx=*/0)
.matchMaps({/*inputMap=*/{N, m.strided(W, w, 0), C},
/*filterMap=*/{w},
/*outputMap=*/{N, W, C}})
.matchBody();
}

template <>
bool isaConvolutionOpOfType<linalg::PoolingNcwMaxOp>(
LinalgOp op, SmallVector<int64_t> *dilations,
SmallVector<int64_t> *strides) {
if (isa<linalg::PoolingNcwMaxOp>(op))
return true;

assert(isaConvolutionOpInterface(op) &&
"expected op to implement ConvolutionOpInterface");

ConvMatcherBuilder m(op, /*spatialRank=*/1, dilations, strides,
PoolingType::MaxSigned);
AffineExpr N = m.dim(0);
AffineExpr C = m.dim(1);
AffineExpr W = m.dim(2);
AffineExpr w = m.dim(3);

return m.matchStride(/*iDim=*/2, /*fDim=*/0, /*oDim=*/2, /*idx=*/0)
.matchMaps({/*inputMap=*/{N, C, m.strided(W, w, 0)},
/*filterMap=*/{w},
/*outputMap=*/{N, C, W}})
.matchBody();
}

template <>
bool isaConvolutionOpOfType<linalg::PoolingNwcMinOp>(
LinalgOp op, SmallVector<int64_t> *dilations,
SmallVector<int64_t> *strides) {
if (isa<linalg::PoolingNwcMinOp>(op))
return true;

assert(isaConvolutionOpInterface(op) &&
"expected op to implement ConvolutionOpInterface");

ConvMatcherBuilder m(op, /*spatialRank=*/1, dilations, strides,
PoolingType::MinSigned);
AffineExpr N = m.dim(0);
AffineExpr W = m.dim(1);
AffineExpr C = m.dim(2);
AffineExpr w = m.dim(3);

return m.matchStride(/*iDim=*/1, /*fDim=*/0, /*oDim=*/1, /*idx=*/0)
.matchMaps({/*inputMap=*/{N, m.strided(W, w, 0), C},
/*filterMap=*/{w},
/*outputMap=*/{N, W, C}})
.matchBody();
}

template <>
bool isaConvolutionOpOfType<linalg::PoolingNwcMinUnsignedOp>(
LinalgOp op, SmallVector<int64_t> *dilations,
SmallVector<int64_t> *strides) {
if (isa<linalg::PoolingNwcMinUnsignedOp>(op))
return true;

assert(isaConvolutionOpInterface(op) &&
"expected op to implement ConvolutionOpInterface");

ConvMatcherBuilder m(op, /*spatialRank=*/1, dilations, strides,
PoolingType::MinUnsigned);
AffineExpr N = m.dim(0);
AffineExpr W = m.dim(1);
AffineExpr C = m.dim(2);
AffineExpr w = m.dim(3);

return m.matchStride(/*iDim=*/1, /*fDim=*/0, /*oDim=*/1, /*idx=*/0)
.matchMaps({/*inputMap=*/{N, m.strided(W, w, 0), C},
/*filterMap=*/{w},
/*outputMap=*/{N, W, C}})
.matchBody();
}

template <>
bool isaConvolutionOpOfType<linalg::PoolingNdhwcSumOp>(
LinalgOp op, SmallVector<int64_t> *dilations,
SmallVector<int64_t> *strides) {
if (isa<linalg::PoolingNdhwcSumOp>(op))
return true;

assert(isaConvolutionOpInterface(op) &&
"expected op to implement ConvolutionOpInterface");

ConvMatcherBuilder m(op, /*spatialRank=*/3, dilations, strides,
PoolingType::Sum);
AffineExpr N = m.dim(0);
AffineExpr D = m.dim(1);
AffineExpr H = m.dim(2);
AffineExpr W = m.dim(3);
AffineExpr C = m.dim(4);
AffineExpr d = m.dim(5);
AffineExpr h = m.dim(6);
AffineExpr w = m.dim(7);

return m.matchStride(/*iDim=*/1, /*fDim=*/0, /*oDim=*/1, /*idx=*/0)
.matchStride(/*iDim=*/2, /*fDim=*/1, /*oDim=*/2, /*idx=*/1)
.matchStride(/*iDim=*/3, /*fDim=*/2, /*oDim=*/3, /*idx=*/2)
.matchMaps({/*inputMap=*/{N, m.strided(D, d, 0), m.strided(H, h, 1),
m.strided(W, w, 2), C},
/*filterMap=*/{d, h, w},
/*outputMap=*/{N, D, H, W, C}})
.matchBody();
}

template <>
bool isaConvolutionOpOfType<linalg::PoolingNdhwcMaxOp>(
LinalgOp op, SmallVector<int64_t> *dilations,
SmallVector<int64_t> *strides) {
if (isa<linalg::PoolingNdhwcMaxOp>(op))
return true;

assert(isaConvolutionOpInterface(op) &&
"expected op to implement ConvolutionOpInterface");

ConvMatcherBuilder m(op, /*spatialRank=*/3, dilations, strides,
PoolingType::MaxSigned);
AffineExpr N = m.dim(0);
AffineExpr D = m.dim(1);
AffineExpr H = m.dim(2);
AffineExpr W = m.dim(3);
AffineExpr C = m.dim(4);
AffineExpr d = m.dim(5);
AffineExpr h = m.dim(6);
AffineExpr w = m.dim(7);

return m.matchStride(/*iDim=*/1, /*fDim=*/0, /*oDim=*/1, /*idx=*/0)
.matchStride(/*iDim=*/2, /*fDim=*/1, /*oDim=*/2, /*idx=*/1)
.matchStride(/*iDim=*/3, /*fDim=*/2, /*oDim=*/3, /*idx=*/2)
.matchMaps({/*inputMap=*/{N, m.strided(D, d, 0), m.strided(H, h, 1),
m.strided(W, w, 2), C},
/*filterMap=*/{d, h, w},
/*outputMap=*/{N, D, H, W, C}})
.matchBody();
}

template <>
bool isaConvolutionOpOfType<linalg::PoolingNdhwcMinOp>(
LinalgOp op, SmallVector<int64_t> *dilations,
SmallVector<int64_t> *strides) {
if (isa<linalg::PoolingNdhwcMinOp>(op))
return true;

assert(isaConvolutionOpInterface(op) &&
"expected op to implement ConvolutionOpInterface");

ConvMatcherBuilder m(op, /*spatialRank=*/3, dilations, strides,
PoolingType::MinSigned);
AffineExpr N = m.dim(0);
AffineExpr D = m.dim(1);
AffineExpr H = m.dim(2);
AffineExpr W = m.dim(3);
AffineExpr C = m.dim(4);
AffineExpr d = m.dim(5);
AffineExpr h = m.dim(6);
AffineExpr w = m.dim(7);

return m.matchStride(/*iDim=*/1, /*fDim=*/0, /*oDim=*/1, /*idx=*/0)
.matchStride(/*iDim=*/2, /*fDim=*/1, /*oDim=*/2, /*idx=*/1)
.matchStride(/*iDim=*/3, /*fDim=*/2, /*oDim=*/3, /*idx=*/2)
.matchMaps({/*inputMap=*/{N, m.strided(D, d, 0), m.strided(H, h, 1),
m.strided(W, w, 2), C},
/*filterMap=*/{d, h, w},
/*outputMap=*/{N, D, H, W, C}})
.matchBody();
}

Value makeComposedPadHighOp(OpBuilder &b, Location loc, RankedTensorType type,
Value source, Value pad, bool nofold,
ValueRange typeDynDims) {
Expand Down
Loading