Research Project: Lightweight Machine Learning for Near-Earth Object Risk Assessment
Binary classifier to predict Potentially Hazardous Asteroids (PHAs) using orbital parameters, achieving planetary defense-grade accuracy while being 100x faster than deep learning approaches.
- Source: NASA Asteroids Classification (Kaggle)
- Size: 90,836 asteroids
- Features: Absolute magnitude, diameter, velocity, miss distance, eccentricity
- Target: Binary (hazardous: 9%, non-hazardous: 91%)
python3 -m venv asteroid_env source asteroid_env/bin/activate pip install -r requirements.txt cat > requirements.txt << 'EOF'
numpy==1.24.3 pandas==2.0.3 scipy==1.11.1
scikit-learn==1.3.0 xgboost==1.7.6 imbalanced-learn==0.11.0
matplotlib==3.7.2 seaborn==0.12.2 plotly==5.15.0
jupyter==1.0.0 ipykernel==6.25.0 ipywidgets==8.1.0
kaggle==1.5.16
joblib==1.3.2
tqdm==4.66.1 astropy==5.3.2 python-dotenv==1.0.0