Skip to content

πŸ¦œπŸ€– LangGraph Sandbox for multi-agent AI workflows β€” with LinkedIn lead collector, Airtable sync, web search πŸ”, VS Code ⚑, and Docker 🐳 support.

License

Notifications You must be signed in to change notification settings

ryaneggz/langgraph-sandbox

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

45 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

LangGraph Starter

A LangGraph-based starter template for building collections of AI agents. This template provides a foundation for creating multi-agent systems with capabilities like LinkedIn lead collection, web search, and Airtable data integration.


✨ Features

  • Collection of configurable AI agents using DeepAgents and LangGraph
  • Agent entrypoints defined in langgraph.json for easy management
  • Example: LinkedIn Lead Collector agent
  • Airtable integration for structured data storage
  • Built-in web search tools
  • VS Code debugging configuration included
  • Docker-ready for containerized development & deployment

πŸš€ Quick Start

Prerequisites

  • Python 3.11+
  • Docker (optional, for containerized deployment)

Installation

  1. Clone the repository

    git clone <YOUR_REPO_URL> langgraph-starter
    cd langgraph-starter
  2. Install dependencies with uv (recommended)

    uv venv
    source .venv/bin/activate
    uv sync
  3. Set up environment variables

    cp .env.example .env
    # Edit .env with your API keys and configuration
  4. Start the development server

    make dev

MCP Server

This project includes an MCP (Model Context Protocol) server for enhanced AI integrations.

Start the MCP server:

python mcp

πŸ–₯️ Recommended LangGraph UIs

  • LangGraph Studio β€” Official Studio for visual graph editing & monitoring
  • Agent Chat UI β€” Clean chat interface for testing your agents

πŸ› οΈ Development & Debugging

  • .vscode/launch.json is pre-configured for:

    • Attach to LangGraph β€” Debug a running server on port 5678
    • Debug Script β€” Run and debug individual scripts

Steps:

  1. Run:

    make debug
  2. In VS Code, press F5 and select Attach to LangGraph.


πŸ—‚οΈ Project Structure

langgraph-starter/
β”œβ”€ agents/
β”‚  └─ linkedin_leads.py          # LinkedIn lead collection agent (example)
β”œβ”€ tools/
β”‚  β”œβ”€ __init__.py
β”‚  β”œβ”€ airtable.py                # Airtable integration tools
β”‚  └─ search.py                  # Web search tools
β”œβ”€ .vscode/
β”‚  └─ launch.json                # VS Code debug config
β”œβ”€ docker-compose.yml            # Docker services
β”œβ”€ langgraph.json                # LangGraph configuration
β”œβ”€ Makefile                      # Dev commands
β”œβ”€ pyproject.toml                # Python project configuration
└─ .env.example                  # Example environment variables

🧰 Commands

Make targets

make dev      # Start development server
make debug    # Start with debugging enabled (port 5678)
make build    # Build and push Docker image

Using the LangGraph CLI directly

langgraph dev                       # Start dev server
langgraph dev --debug-port 5678     # Start with debugging
langgraph build                     # Build the application

🧠 How It Works

Agent Architecture

  • Modular Design β€” Each agent is a separate module under agents/
  • LangGraph Integration β€” Agents and entrypoints are declared in langgraph.json
  • Tooling β€” Shared tools under tools/ (e.g., Airtable, search) can be reused
  • State & Orchestration β€” LangGraph coordinates agent state and message flow

Included Example Agents

  1. LinkedIn Lead Collector β€” Searches LinkedIn for potential leads (example logic)
  2. Note Taker β€” Normalizes and organizes collected data
  3. Airtable Integration β€” Persists structured results to Airtable

Adding a New Agent

  1. Create a new file under agents/ (e.g., my_agent.py)
  2. Register it in langgraph.json (entrypoints, graph configuration)
  3. Wire up any shared tools you need from tools/

βš™οΈ Configuration

Key files:

  • langgraph.json β€” Graphs and entrypoints
  • .env β€” Environment variables and API keys
  • pyproject.toml β€” Python dependencies and project metadata
  • .vscode/launch.json β€” VS Code debugging configuration

Tip: Ensure any secrets (API keys, tokens) are only in .env and excluded from version control.


🐳 Docker (optional)

Build and run with Docker:

docker compose up --build

Mount local files (e.g., /files) via docker-compose.yml volumes for read/write access.


🀝 Contributing

  1. Fork the repo

  2. Create a feature branch:

    git checkout -b feature/amazing-feature
  3. Commit:

    git commit -m "Add amazing feature"
  4. Push:

    git push origin feature/amazing-feature
  5. Open a Pull Request


πŸ“„ License

This project is licensed under the terms specified in the LICENSE file.

About

πŸ¦œπŸ€– LangGraph Sandbox for multi-agent AI workflows β€” with LinkedIn lead collector, Airtable sync, web search πŸ”, VS Code ⚑, and Docker 🐳 support.

Topics

Resources

License

Stars

Watchers

Forks

Packages

 
 
 

Contributors 2

  •  
  •