Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions R/helpers-shared.R
Original file line number Diff line number Diff line change
Expand Up @@ -44,3 +44,18 @@ check_ignored_arguments <- function(..., ok_args = character()) {
}
}
}

#' Validate bounds passed to stat_density/geom_density wrappers
#' @noRd
validate_density_bounds <- function(bounds) {
if (is.null(bounds)) {
return(NULL)
}
if (!is.numeric(bounds) || length(bounds) != 2 || anyNA(bounds)) {
abort("`bounds` must be a numeric vector of length 2.")
}
if (bounds[1] >= bounds[2]) {
abort("`bounds` must satisfy bounds[1] < bounds[2].")
}
bounds
}
Comment on lines +50 to +61
Copy link

Copilot AI Dec 29, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The new validate_density_bounds function lacks test coverage. While tests verify that the bounds argument can be passed to various plotting functions (e.g., in test-ppc-distributions.R, test-mcmc-distributions.R), there are no tests that validate the behavior of validate_density_bounds itself. Consider adding tests to test-helpers-shared.R to verify that the function correctly handles invalid inputs such as: non-numeric values, vectors with length != 2, vectors with NA values, and cases where bounds[1] >= bounds[2].

Copilot uses AI. Check for mistakes.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You don't necessarily need to test the validate_density_bounds function itself, but it would be good to at least add a test where invalid bounds are passed to a plotting function.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@copilot Implement Jonah's suggestion by writing a test in the same style as the existing tests where a plotting function receives invalid bounds. Test all branches of the validate_density_bounds function

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm not sure if that works, but I'll write/generate a test either way.

64 changes: 39 additions & 25 deletions R/mcmc-distributions.R
Original file line number Diff line number Diff line change
Expand Up @@ -151,6 +151,7 @@ mcmc_dens <- function(
adjust = NULL,
kernel = NULL,
n_dens = NULL,
bounds = NULL,
alpha = 1
) {
check_ignored_arguments(...)
Expand All @@ -166,6 +167,7 @@ mcmc_dens <- function(
adjust = adjust,
kernel = kernel,
n_dens = n_dens,
bounds = bounds,
alpha = alpha,
...
)
Expand Down Expand Up @@ -216,7 +218,8 @@ mcmc_dens_overlay <- function(
bw = NULL,
adjust = NULL,
kernel = NULL,
n_dens = NULL
n_dens = NULL,
bounds = NULL
) {
check_ignored_arguments(...)
.mcmc_dens(
Expand All @@ -232,6 +235,7 @@ mcmc_dens_overlay <- function(
adjust = adjust,
kernel = kernel,
n_dens = n_dens,
bounds = bounds,
...
)
}
Expand All @@ -250,7 +254,8 @@ mcmc_dens_chains <- function(
bw = NULL,
adjust = NULL,
kernel = NULL,
n_dens = NULL
n_dens = NULL,
bounds = NULL
) {
check_ignored_arguments(...)
data <- mcmc_dens_chains_data(
Expand All @@ -261,7 +266,8 @@ mcmc_dens_chains <- function(
bw = bw,
adjust = adjust,
kernel = kernel,
n_dens = n_dens
n_dens = n_dens,
bounds = bounds
)

n_chains <- length(unique(data$chain))
Expand Down Expand Up @@ -314,9 +320,11 @@ mcmc_dens_chains_data <- function(
transformations = list(),
...,
bw = NULL, adjust = NULL, kernel = NULL,
n_dens = NULL
n_dens = NULL,
bounds = NULL
) {
check_ignored_arguments(...)
bounds <- validate_density_bounds(bounds)

x %>%
prepare_mcmc_array(
Expand All @@ -329,7 +337,8 @@ mcmc_dens_chains_data <- function(
group_vars = c("Parameter", "Chain"),
value_var = "Value",
interval_width = 1,
bw = bw, adjust = adjust, kernel = kernel, n_dens = n_dens
bw = bw, adjust = adjust, kernel = kernel,
bounds = bounds, n_dens = n_dens
) %>%
mutate(Chain = factor(.data$Chain)) %>%
rlang::set_names(tolower) %>%
Expand Down Expand Up @@ -441,21 +450,23 @@ mcmc_violin <- function(
color_chains = FALSE,
geom = c("density", "violin"),
probs = c(0.1, 0.5, 0.9),
trim = FALSE,
alpha = 1,
bw = NULL,
adjust = NULL,
kernel = NULL,
n_dens = NULL,
...
) {
trim = FALSE,
alpha = 1,
bw = NULL,
adjust = NULL,
kernel = NULL,
n_dens = NULL,
bounds = NULL,
...
) {

bw <- bw %||% "nrd0"
adjust <- adjust %||% 1
kernel <- kernel %||% "gaussian"
n_dens <- n_dens %||% 1024
bw <- bw %||% "nrd0"
adjust <- adjust %||% 1
kernel <- kernel %||% "gaussian"
n_dens <- n_dens %||% 1024
bounds <- validate_density_bounds(bounds)

x <- prepare_mcmc_array(x, pars, regex_pars, transformations)
x <- prepare_mcmc_array(x, pars, regex_pars, transformations)
data <- melt_mcmc.mcmc_array(x)
data$Chain <- factor(data$Chain)
n_param <- num_params(data)
Expand All @@ -475,13 +486,16 @@ mcmc_violin <- function(
geom_args <- list(linewidth = 0.5, na.rm = TRUE, alpha = alpha)
if (violin) {
geom_args[["draw_quantiles"]] <- probs
} else {
geom_args[["trim"]] <- trim
geom_args[["bw"]] <- bw
geom_args[["adjust"]] <- adjust
geom_args[["kernel"]] <- kernel
geom_args[["n"]] <- n_dens
}
} else {
geom_args[["trim"]] <- trim
geom_args[["bw"]] <- bw
geom_args[["adjust"]] <- adjust
geom_args[["kernel"]] <- kernel
geom_args[["n"]] <- n_dens
if (!is.null(bounds)) {
geom_args[["bounds"]] <- bounds
}
}
if (by_chain) {
# aes_mapping[["color"]] <- ~ Chain
# aes_mapping[["group"]] <- ~ Chain
Expand Down
36 changes: 27 additions & 9 deletions R/mcmc-intervals.R
Original file line number Diff line number Diff line change
Expand Up @@ -301,15 +301,17 @@ mcmc_areas <- function(x,
bw = NULL,
adjust = NULL,
kernel = NULL,
n_dens = NULL) {
n_dens = NULL,
bounds = NULL) {
check_ignored_arguments(...)
area_method <- match.arg(area_method)

data <- mcmc_areas_data(
x, pars, regex_pars, transformations,
prob = prob, prob_outer = prob_outer,
point_est = point_est, rhat = rhat,
bw = bw, adjust = adjust, kernel = kernel, n_dens = n_dens
bw = bw, adjust = adjust, kernel = kernel,
n_dens = n_dens, bounds = bounds
)
datas <- split(data, data$interval)

Expand Down Expand Up @@ -474,13 +476,14 @@ mcmc_areas_ridges <- function(x,
prob = 1,
border_size = NULL,
bw = NULL, adjust = NULL, kernel = NULL,
n_dens = NULL) {
n_dens = NULL,
bounds = NULL) {
check_ignored_arguments(...)
data <- mcmc_areas_ridges_data(x, pars = pars, regex_pars = regex_pars,
transformations = transformations,
prob = prob, prob_outer = prob_outer,
bw = bw, adjust = adjust, kernel = kernel,
n_dens = n_dens)
n_dens = n_dens, bounds = bounds)

datas <- data %>%
split(data$interval)
Expand Down Expand Up @@ -668,8 +671,10 @@ mcmc_areas_data <- function(x,
bw = NULL,
adjust = NULL,
kernel = NULL,
n_dens = NULL) {
n_dens = NULL,
bounds = NULL) {
probs <- check_interval_widths(prob, prob_outer)
bounds <- validate_density_bounds(bounds)

# First compute normal intervals so we know the width of the data, point
# estimates, and have prepared rhat values.
Expand Down Expand Up @@ -699,6 +704,7 @@ mcmc_areas_data <- function(x,
bw = bw,
adjust = adjust,
kernel = kernel,
bounds = bounds,
n_dens = n_dens) %>%
mutate(interval = "inner")

Expand All @@ -710,6 +716,7 @@ mcmc_areas_data <- function(x,
bw = bw,
adjust = adjust,
kernel = kernel,
bounds = bounds,
n_dens = n_dens) %>%
mutate(interval = "outer")

Expand Down Expand Up @@ -777,12 +784,14 @@ mcmc_areas_ridges_data <- function(x,
prob = 1,
bw = NULL,
adjust = NULL, kernel = NULL,
n_dens = NULL) {
n_dens = NULL,
bounds = NULL) {
check_ignored_arguments(...)
mcmc_areas_data(x, pars = pars, regex_pars = regex_pars,
transformations = transformations,
prob = prob, prob_outer = prob_outer, point_est = "none",
bw = bw, adjust = adjust, kernel = kernel, n_dens = n_dens)
bw = bw, adjust = adjust, kernel = kernel,
n_dens = n_dens, bounds = bounds)
}


Expand Down Expand Up @@ -841,15 +850,24 @@ compute_column_density <- function(df, group_vars, value_var, ...) {

# Given a vector of values, compute a density dataframe.
compute_interval_density <- function(x, interval_width = 1, n_dens = 1024,
bw = NULL, adjust = NULL, kernel = NULL) {
bw = NULL, adjust = NULL, kernel = NULL,
bounds = NULL) {
n_dens <- n_dens %||% 1024

tail_width <- (1 - interval_width) / 2
qs <- quantile(x, probs = c(tail_width, 1 - tail_width))
support <- range(qs)
if (!is.null(bounds)) {
support[1] <- max(bounds[1], support[1])
support[2] <- min(bounds[2], support[2])
if (!(support[1] < support[2])) {
support <- range(qs)
}
}

args <- c(
# can't be null
list(x = x, from = min(qs), to = max(qs), n = n_dens),
list(x = x, from = support[1], to = support[2], n = n_dens),
# might be null
bw = bw, adjust = adjust, kernel = kernel)

Expand Down
13 changes: 11 additions & 2 deletions R/ppc-distributions.R
Original file line number Diff line number Diff line change
Expand Up @@ -165,8 +165,10 @@ ppc_dens_overlay <-
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
bounds = NULL,
n_dens = 1024) {
check_ignored_arguments(...)
bounds <- validate_density_bounds(bounds)

data <- ppc_data(y, yrep)
ggplot(data, mapping = aes(x = .data$value)) +
Expand All @@ -179,6 +181,7 @@ ppc_dens_overlay <-
bw = bw,
adjust = adjust,
kernel = kernel,
bounds = bounds,
n = n_dens
) +
overlay_ppd_densities(
Expand All @@ -190,6 +193,7 @@ ppc_dens_overlay <-
bw = bw,
adjust = adjust,
kernel = kernel,
bounds = bounds,
n = n_dens
) +
scale_color_ppc() +
Expand All @@ -215,6 +219,7 @@ ppc_dens_overlay_grouped <- function(y,
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
bounds = NULL,
n_dens = 1024) {
check_ignored_arguments(...)

Expand All @@ -228,6 +233,7 @@ ppc_dens_overlay_grouped <- function(y,
bw = bw,
adjust = adjust,
kernel = kernel,
bounds = bounds,
n_dens = n_dens
)
# Use + list(data) trick to replace the data in the plot. The layer-specific
Expand Down Expand Up @@ -335,8 +341,10 @@ ppc_dens <-
...,
trim = FALSE,
size = 0.5,
alpha = 1) {
alpha = 1,
bounds = NULL) {
check_ignored_arguments(...)
bounds <- validate_density_bounds(bounds)
data <- ppc_data(y, yrep)
ggplot(data, mapping = aes(
x = .data$value,
Expand All @@ -346,7 +354,8 @@ ppc_dens <-
geom_density(
linewidth = size,
alpha = alpha,
trim = trim
trim = trim,
bounds = bounds
) +
scale_fill_ppc() +
scale_color_ppc() +
Expand Down
3 changes: 2 additions & 1 deletion R/ppc-loo.R
Original file line number Diff line number Diff line change
Expand Up @@ -141,7 +141,8 @@ NULL
#' calculated from the PIT values to the theoretical standard normal
#' quantiles.
#' @param trim Passed to [ggplot2::stat_density()].
#' @template args-density-controls
#' @param bw,adjust,kernel,n_dens Optional arguments passed to
#' [stats::density()] to override the defaults.
#' @param boundary_correction For `ppc_loo_pit_overlay()`, when set to `TRUE`
#' (the default) the function will compute boundary corrected density values
#' via convolution and a Gaussian filter, also known as the reflection method
Expand Down
Loading