Skip to content

tndrg/DeepGP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multimodal deep learning enhances genomic risk prediction for cardiometabolic diseases in UK Biobank

Leveraging Bidirectional Mamba's capacity to capture long-range dependencies across whole-genome SNP data, we propose DeepGP, a deep learning approach to improve genetic prediction for cardiometabolic diseases while providing interpretable insights into risk factors.

Papar Information

  • Authors: Taiyu Zhu, Upamanyu Ghose, Héctor Climente-González, Joanna M. M. Howson, Sile Hu, Alejo Nevado-Holgado
  • Affiliations: University of Oxford, Novo Nordisk Research Centre Oxford
  • Preprint: TBA

Dataset

  • UK Biobank Resource under Application Number 53639

Use

  • To train and test the model, run:
     bash scripts/t2d.sh
    

Directory Hierarchy

|—— .gitignore
|—— README.md
|—— args_generator.py
|—— layers
|    |—— Embed.py
|    |—— SelfAttention_Family.py
|    |—— Transformer_EncDec.py
|—— main_genome.py
|—— models
|    |—— BaseModel.py
|    |—— DeepGP.py
|—— scripts
|    |—— t2d.sh
|—— utils.py

Code Details

Tested Platform

  • software
    Python: 3.10.13
    PyTorch 2.1.1
    PyTorch Lightning 2.0.8
    
  • hardware
    CPU: AMD EPYC 7R13 Processor
    GPU: NVIDIA A10 Tensor Core GPU
    

References

We would like to express our gratitude to the following GitHub repositories for their valuable code and contributions:

License

BSD 3-Clause License

Copyright (c) 2025, University of Oxford. & Novo Nordisk. All rights reserved.

Citing

Please use the following BibTeX entry.

TBA


About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published