To run the evaluation,
- download the dataset:
$ git submodule update --init
- set up a Python 3 virtual environment and install the required packages:
$ mkvirtualenv -p $(which python3) system (system) $ pip install -U pip (system) $ pip install -r requirements.txt (system) $ pip install -r dataset/requirements.txt - remove the log file with results:
(system) $ rm __main__.log
- run the main shell script:
(system) $ ./__main.sh
Evaluation results will be printed to the standard output and stored inside the
__main__.log log file. The dataset takes up about 579M of disk space. The
evaluation requires about 70G of memory and a month of wall clock time with 32
Intel Xeon E5-2650 v2 (2.60 GHz) CPU cores; you can reduce the memory
requirements by turning the individual preprocessing.images.CACHES and
preprocessing.features.CACHES dictionaries into LRU caches with fixed size.