Skip to content

worm-GPT-4/wormGPT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

WormGPT 4

WormGPT 4 is an unrestricted large language model (LLM) designed for automating text generation without built-in safety mechanisms. Below is an extended technical overview of its capabilities, risks, and architectural characteristics.

1. Overview

WormGPT 4 is an LLM with an extended context window, parametric style control, and support for generating obfuscated content. The model is positioned as a tool for scenarios that require the absence of request filtering.


2. Core Functional Capabilities

2.1. Unrestricted Generation Engine

  • Processes requests without content filtering.
  • Generates structured and unstructured text blocks.
  • Supports long logical chains and complex instructions.

2.2. Social Engineering Content Modeling

  • Imitates corporate, technical, and business style.
  • Generates multistep communication scenarios.
  • Synthesizes messages resembling real human correspondence.

2.3. Code Synthesis

  • Creates code structures and templates.
  • Generates obfuscated, scrambled, and polymorphic code.
  • Models logic, pseudocode, and command sequences.

2.4. Content Obfuscation Layer

  • Polymorphic text transformation.
  • Generates varied, encrypted, noisy, and fragmented versions of source content.
  • Conceals semantics and structure of text.

2.5. Bulk Automation

  • Mass generation of templates.
  • Supports parametric cycles (N variations of text).
  • Artificially scales text operations.

2.6. Adaptive Style Control

  • Controls tone, formality, length, and structure of text.
  • Imitates specific personal styles.
  • Supports multilingual templates.

3. Architecture (Hypothesized)

WormGPT 4 has no official public documentation, but based on its functionality the model likely uses:

  • LLM Core — a modified transformer-type architecture.
  • Extended Context Window (32k–128k tokens).
  • Temperature/Top-P modes available to the user.
  • No RLHF (no safety-aligned training).
  • Custom Prompt Router without request filtering.

ASCII Diagram

                +-----------------------------+
                |        User Input           |
                +-----------------------------+
                             |
                             v
             +--------------------------------------+
             |   Prompt Router (No Safety Layer)     |
             +--------------------------------------+
                             |
                             v
         +------------------------------------------------+
         |             LLM Core (Transformer)             |
         |  - Sequence modeling                           |
         |  - Context memory                              |
         |  - Style emulation                             |
         +------------------------------------------------+
                             |
                             v
               +------------------------------+
               |     Output Generator         |
               |  - Obfuscation module        |
               |  - Style/role filters        |
               +------------------------------+
                             |
                             v
                   +------------------+
                   |     Output       |
                   +------------------+

4. Threat Model

4.1. Threat Vectors

  • Mass generation of texts for manipulative communication.
  • Synthesis of obfuscated instructions that complicate analysis.
  • Polymorphic content transformation to bypass detection.
  • Generation of technical structures resembling code.

4.2. Target Surfaces

  • Communication platforms.
  • Automated text systems.
  • Analysis and monitoring environments.
  • Human factor (social engineering).

6. Comparison: WormGPT 3 → WormGPT 4

Capability WGPT 3 WGPT 4
Context 8k–16k 32k–128k
Obfuscation Basic Polymorphic
Style Imitation Medium High
Multistep Logic Limited Extended
Stability Medium Higher
Mass Generation Partial Full

Installation

1. Download

  1. Open the Releases tab of this repository.
  2. Download the latest file: WormGPT.exe for Windows or WormGPT.dmg for MacOS

2. First Launch

On first run the application will:

  • create a local configuration folder,
  • generate default settings,
  • initialize the LLM routing layer.

No installation of Python or Git is required.