Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Nov 14, 2025

📄 20% (0.20x) speedup for bittrade.parse_ticker in python/ccxt/async_support/bittrade.py

⏱️ Runtime : 125 milliseconds 104 milliseconds (best of 32 runs)

📝 Explanation and details

The optimized code achieves a 20% speedup primarily through micro-optimizations that reduce Python overhead in hot functions:

Key Optimizations:

  1. Faster Dictionary Initialization in __init__: Replaced ternary operations with direct if None checks (if self.precision is None: self.precision = {} vs dict() if self.precision is None else self.precision). This eliminates redundant function calls to dict() and reduces object creation overhead.

  2. Optimized safe_string Method: Replaced the heavy Exchange.key_exists() function with a direct try/catch approach using dictionary access. This eliminates multiple isinstance checks and function call overhead, while also handling edge cases like empty strings more efficiently.

  3. Streamlined safe_integer Method: Similar to safe_string, replaced Exchange.key_exists() with direct dictionary access and added early validation for None/empty values before attempting type conversion.

  4. Improved iso8601 Function: Consolidated input validation into a single check (if not isinstance(timestamp, int) or timestamp is None) and optimized string formatting using f-strings instead of .format() method calls.

  5. Method Caching in safe_ticker: Added local variable binding for frequently accessed methods (safe_string = self.safe_string) to avoid repeated attribute lookups in the hot path where these functions are called dozens of times.

  6. Reduced Function Calls in parse_ticker: Cached method references at the start of the function to eliminate repeated self.method lookups during tight loops.

Performance Impact: These optimizations are particularly effective for the ticker parsing workload shown in tests, where functions like safe_string are called 97,576 times. The optimizations show consistent 10-25% improvements across different test cases, with the largest gains (42.3% faster) occurring in minimal field scenarios where the reduced overhead has the most relative impact.

Compatibility: All optimizations maintain identical functionality and output while reducing computational overhead, making them safe for existing workloads without behavioral changes.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 3568 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
import pytest
from ccxt.async_support.bittrade import bittrade

# Unit Tests for bittrade.parse_ticker

@pytest.fixture
def bittrade_instance():
    return bittrade()

# --- Basic Test Cases ---
def test_basic_parse_ticker_with_list_bid_ask(bittrade_instance):
    # Typical input with bid/ask as lists
    ticker = {
        "amount": 26228.672978342216,
        "open": 9078.95,
        "close": 9146.86,
        "high": 9155.41,
        "low": 8988.0,
        "bid": [9146.86, 0.080758],
        "ask": [9146.87, 0.156134],
        "vol": 2.3822168242201668E8,
        "ts": 1680000000000,
    }
    codeflash_output = bittrade_instance.parse_ticker(ticker); result = codeflash_output # 94.5μs -> 83.0μs (13.9% faster)

def test_basic_parse_ticker_with_scalar_bid_ask(bittrade_instance):
    # Typical input with bid/ask as scalars
    ticker = {
        "symbol": "bhdht",
        "open": 2.3938,
        "high": 2.4151,
        "low": 2.3323,
        "close": 2.3909,
        "amount": 628.992,
        "vol": 1493.71841095,
        "bid": 2.3643,
        "bidSize": 0.7136,
        "ask": 2.4061,
        "askSize": 0.4156,
        "ts": 1680000000123,
    }
    codeflash_output = bittrade_instance.parse_ticker(ticker); result = codeflash_output # 91.6μs -> 82.4μs (11.1% faster)

def test_basic_parse_ticker_missing_optional_fields(bittrade_instance):
    # Input missing bid/ask, bidSize/askSize
    ticker = {
        "open": 1.0,
        "close": 2.0,
        "high": 3.0,
        "low": 0.5,
        "amount": 100,
        "vol": 200,
        "ts": 1680000000456,
    }
    codeflash_output = bittrade_instance.parse_ticker(ticker); result = codeflash_output # 82.4μs -> 74.8μs (10.2% faster)

# --- Edge Test Cases ---
def test_edge_parse_ticker_zero_and_none_values(bittrade_instance):
    # Input with zero values and None values
    ticker = {
        "open": 0,
        "close": None,
        "high": 0,
        "low": None,
        "amount": 0,
        "vol": None,
        "bid": [0, None],
        "ask": [None, 0],
        "ts": 1680000000999,
    }
    codeflash_output = bittrade_instance.parse_ticker(ticker); result = codeflash_output # 47.8μs -> 38.4μs (24.5% faster)

def test_edge_parse_ticker_missing_all_fields(bittrade_instance):
    # Completely empty ticker dict
    ticker = {}
    codeflash_output = bittrade_instance.parse_ticker(ticker); result = codeflash_output # 26.7μs -> 22.7μs (17.5% faster)


def test_edge_parse_ticker_negative_timestamp(bittrade_instance):
    # Negative timestamp should yield None for datetime
    ticker = {
        "open": 1,
        "close": 2,
        "high": 3,
        "low": 0.5,
        "amount": 100,
        "vol": 200,
        "ts": -123456789,
    }
    codeflash_output = bittrade_instance.parse_ticker(ticker); result = codeflash_output # 66.9μs -> 61.8μs (8.24% faster)

def test_edge_parse_ticker_bid_ask_as_empty_lists(bittrade_instance):
    # Bid/ask as empty lists
    ticker = {
        "bid": [],
        "ask": [],
        "open": 1,
        "close": 2,
        "high": 3,
        "low": 0.5,
        "amount": 100,
        "vol": 200,
        "ts": 1680000001234,
    }
    codeflash_output = bittrade_instance.parse_ticker(ticker); result = codeflash_output # 84.2μs -> 74.2μs (13.4% faster)

def test_edge_parse_ticker_bid_ask_as_non_list_non_scalar(bittrade_instance):
    # Bid/ask as dicts, which should be ignored
    ticker = {
        "bid": {"price": 1, "size": 2},
        "ask": {"price": 3, "size": 4},
        "open": 1,
        "close": 2,
        "high": 3,
        "low": 0.5,
        "amount": 100,
        "vol": 200,
        "ts": 1680000001235,
    }
    codeflash_output = bittrade_instance.parse_ticker(ticker); result = codeflash_output # 88.2μs -> 79.4μs (11.1% faster)

# --- Large Scale Test Cases ---
def test_large_scale_parse_ticker_many_elements(bittrade_instance):
    # Large ticker with many fields, only relevant fields should be parsed
    ticker = {
        "open": 1.1,
        "close": 2.2,
        "high": 3.3,
        "low": 0.4,
        "amount": 1000,
        "vol": 2000,
        "bid": [2.1, 50.5],
        "ask": [2.2, 51.5],
        "ts": 1680000002000,
    }
    # Add 900 irrelevant fields
    for i in range(100, 1000):
        ticker[f"irrelevant_{i}"] = i
    codeflash_output = bittrade_instance.parse_ticker(ticker); result = codeflash_output # 88.5μs -> 78.6μs (12.5% faster)

def test_large_scale_parse_ticker_batch(bittrade_instance):
    # Parse 1000 tickers in a batch, all should parse correctly
    tickers = []
    for i in range(1000):
        tickers.append({
            "open": i + 1,
            "close": i + 2,
            "high": i + 3,
            "low": i + 0.5,
            "amount": i * 10,
            "vol": i * 20,
            "bid": [i + 2, i + 0.1],
            "ask": [i + 3, i + 0.2],
            "ts": 1680000003000 + i,
        })
    for i, ticker in enumerate(tickers):
        codeflash_output = bittrade_instance.parse_ticker(ticker); result = codeflash_output # 40.5ms -> 34.0ms (19.2% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
import pytest
from ccxt.async_support.bittrade import bittrade


# Minimal stub for Market and Ticker types
class Market(dict): pass
class Ticker(dict): pass
from ccxt.async_support.bittrade import bittrade

# ------------------- UNIT TESTS -------------------

@pytest.fixture
def exchange():
    return bittrade()

# 1. Basic Test Cases

def test_parse_ticker_basic_full(exchange):
    # Typical ticker with all fields present, bid/ask as lists
    ticker = {
        "amount": 100.5,
        "open": 9000.0,
        "close": 9100.0,
        "high": 9150.0,
        "low": 8900.0,
        "bid": [9099.0, 0.5],
        "ask": [9101.0, 0.4],
        "vol": 10000.0,
        "ts": 1650000000000,
    }
    market = {'symbol': 'BTC/USDT'}
    codeflash_output = exchange.parse_ticker(ticker, market); result = codeflash_output # 97.1μs -> 86.6μs (12.2% faster)

def test_parse_ticker_basic_bid_ask_numbers(exchange):
    # Ticker with bid/ask as numbers and bidSize/askSize
    ticker = {
        "amount": 50,
        "open": 100,
        "close": 110,
        "high": 120,
        "low": 90,
        "bid": 109,
        "bidSize": 1.1,
        "ask": 111,
        "askSize": 2.2,
        "vol": 5000,
        "ts": 1650000000100,
    }
    market = {'symbol': 'ETH/USDT'}
    codeflash_output = exchange.parse_ticker(ticker, market); result = codeflash_output # 85.8μs -> 78.6μs (9.21% faster)

def test_parse_ticker_basic_missing_market(exchange):
    # Ticker with no market argument
    ticker = {
        "amount": 25,
        "open": 200,
        "close": 210,
        "high": 220,
        "low": 190,
        "bid": [209, 0.9],
        "ask": [211, 1.1],
        "vol": 2500,
        "ts": 1650000000200,
    }
    codeflash_output = exchange.parse_ticker(ticker); result = codeflash_output # 85.2μs -> 76.3μs (11.8% faster)

# 2. Edge Test Cases

def test_parse_ticker_edge_missing_fields(exchange):
    # Ticker missing optional fields
    ticker = {
        "open": 1000,
        "close": 1100,
        "bid": [1099, 0.3],
        "vol": 1000,
        "ts": 1650000000300,
    }
    market = {'symbol': 'LTC/USDT'}
    codeflash_output = exchange.parse_ticker(ticker, market); result = codeflash_output # 82.9μs -> 75.0μs (10.5% faster)

def test_parse_ticker_edge_bid_ask_none(exchange):
    # Ticker with bid/ask explicitly None
    ticker = {
        "amount": 10,
        "open": 500,
        "close": 505,
        "high": 510,
        "low": 495,
        "bid": None,
        "ask": None,
        "vol": 100,
        "ts": 1650000000400,
    }
    market = {'symbol': 'ADA/USDT'}
    codeflash_output = exchange.parse_ticker(ticker, market); result = codeflash_output # 84.4μs -> 76.1μs (10.9% faster)

def test_parse_ticker_edge_bid_ask_empty_list(exchange):
    # Ticker with bid/ask as empty lists
    ticker = {
        "amount": 5,
        "open": 100,
        "close": 105,
        "high": 110,
        "low": 95,
        "bid": [],
        "ask": [],
        "vol": 50,
        "ts": 1650000000500,
    }
    market = {'symbol': 'DOGE/USDT'}
    codeflash_output = exchange.parse_ticker(ticker, market); result = codeflash_output # 84.3μs -> 75.5μs (11.6% faster)

def test_parse_ticker_edge_non_numeric_strings(exchange):
    # Ticker with string values for prices/volumes
    ticker = {
        "amount": "123.45",
        "open": "1000.00",
        "close": "1100.00",
        "high": "1200.00",
        "low": "900.00",
        "bid": ["1099.99", "0.123"],
        "ask": ["1101.01", "0.456"],
        "vol": "9999.99",
        "ts": "1650000000600",
    }
    market = {'symbol': 'XRP/USDT'}
    codeflash_output = exchange.parse_ticker(ticker, market); result = codeflash_output # 88.7μs -> 79.1μs (12.1% faster)

def test_parse_ticker_edge_zero_values(exchange):
    # Ticker with zero values
    ticker = {
        "amount": 0,
        "open": 0,
        "close": 0,
        "high": 0,
        "low": 0,
        "bid": [0, 0],
        "ask": [0, 0],
        "vol": 0,
        "ts": 1650000000700,
    }
    market = {'symbol': 'ZERO/USDT'}
    codeflash_output = exchange.parse_ticker(ticker, market); result = codeflash_output # 47.9μs -> 39.4μs (21.8% faster)

def test_parse_ticker_edge_large_numbers(exchange):
    # Ticker with very large numbers
    ticker = {
        "amount": 1e9,
        "open": 1e8,
        "close": 1e8 + 1e6,
        "high": 1e9,
        "low": 1e6,
        "bid": [1e8, 1e6],
        "ask": [1e8 + 1e5, 1e7],
        "vol": 1e12,
        "ts": 1650000000800,
    }
    market = {'symbol': 'BIG/USDT'}
    codeflash_output = exchange.parse_ticker(ticker, market); result = codeflash_output # 92.5μs -> 83.1μs (11.3% faster)

def test_parse_ticker_edge_negative_values(exchange):
    # Ticker with negative values (should be parsed as floats)
    ticker = {
        "amount": -100,
        "open": -200,
        "close": -150,
        "high": -100,
        "low": -300,
        "bid": [-151, -1],
        "ask": [-149, -2],
        "vol": -5000,
        "ts": 1650000000900,
    }
    market = {'symbol': 'NEG/USDT'}
    codeflash_output = exchange.parse_ticker(ticker, market); result = codeflash_output # 86.5μs -> 78.0μs (10.8% faster)

def test_parse_ticker_edge_missing_all(exchange):
    # Ticker with almost no fields
    ticker = {}
    market = {'symbol': 'NONE/USDT'}
    codeflash_output = exchange.parse_ticker(ticker, market); result = codeflash_output # 26.8μs -> 23.1μs (16.3% faster)

# 3. Large Scale Test Cases

def test_parse_ticker_large_batch(exchange):
    # Parse 1000 tickers in a loop, all with different values
    market = {'symbol': 'BATCH/USDT'}
    for i in range(1000):
        ticker = {
            "amount": i,
            "open": i + 1,
            "close": i + 2,
            "high": i + 3,
            "low": i + 4,
            "bid": [i + 5, i + 6],
            "ask": [i + 7, i + 8],
            "vol": i + 9,
            "ts": 1650000001000 + i,
        }
        codeflash_output = exchange.parse_ticker(ticker, market); result = codeflash_output # 40.9ms -> 34.8ms (17.6% faster)

def test_parse_ticker_large_missing_fields_batch(exchange):
    # Parse 1000 tickers with only bid/ask and ts
    market = {'symbol': 'MINIMAL/USDT'}
    for i in range(1000):
        ticker = {
            "bid": [i, i + 1],
            "ask": [i + 2, i + 3],
            "ts": 1650000010000 + i,
        }
        codeflash_output = exchange.parse_ticker(ticker, market); result = codeflash_output # 16.7ms -> 11.7ms (42.3% faster)

def test_parse_ticker_large_randomized(exchange):
    # Randomized values in a batch
    import random
    market = {'symbol': 'RAND/USDT'}
    for i in range(500):
        ticker = {
            "amount": random.uniform(0, 10000),
            "open": random.uniform(0, 50000),
            "close": random.uniform(0, 50000),
            "high": random.uniform(0, 50000),
            "low": random.uniform(0, 50000),
            "bid": [random.uniform(0, 50000), random.uniform(0, 10)],
            "ask": [random.uniform(0, 50000), random.uniform(0, 10)],
            "vol": random.uniform(0, 100000),
            "ts": 1650000020000 + i,
        }
        codeflash_output = exchange.parse_ticker(ticker, market); result = codeflash_output # 25.6ms -> 22.5ms (13.9% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-bittrade.parse_ticker-mhy8usn1 and push.

Codeflash

The optimized code achieves a 20% speedup primarily through micro-optimizations that reduce Python overhead in hot functions:

**Key Optimizations:**

1. **Faster Dictionary Initialization in `__init__`**: Replaced ternary operations with direct `if None` checks (`if self.precision is None: self.precision = {}` vs `dict() if self.precision is None else self.precision`). This eliminates redundant function calls to `dict()` and reduces object creation overhead.

2. **Optimized `safe_string` Method**: Replaced the heavy `Exchange.key_exists()` function with a direct try/catch approach using dictionary access. This eliminates multiple isinstance checks and function call overhead, while also handling edge cases like empty strings more efficiently.

3. **Streamlined `safe_integer` Method**: Similar to `safe_string`, replaced `Exchange.key_exists()` with direct dictionary access and added early validation for None/empty values before attempting type conversion.

4. **Improved `iso8601` Function**: Consolidated input validation into a single check (`if not isinstance(timestamp, int) or timestamp is None`) and optimized string formatting using f-strings instead of `.format()` method calls.

5. **Method Caching in `safe_ticker`**: Added local variable binding for frequently accessed methods (`safe_string = self.safe_string`) to avoid repeated attribute lookups in the hot path where these functions are called dozens of times.

6. **Reduced Function Calls in `parse_ticker`**: Cached method references at the start of the function to eliminate repeated `self.method` lookups during tight loops.

**Performance Impact**: These optimizations are particularly effective for the ticker parsing workload shown in tests, where functions like `safe_string` are called 97,576 times. The optimizations show consistent 10-25% improvements across different test cases, with the largest gains (42.3% faster) occurring in minimal field scenarios where the reduced overhead has the most relative impact.

**Compatibility**: All optimizations maintain identical functionality and output while reducing computational overhead, making them safe for existing workloads without behavioral changes.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 November 14, 2025 02:34
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Nov 14, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant